Abstract 5271
Background
Clinical trials improve our knowledge of diseases and treatments while providing patients access to investigational agents. However, approximately 3% of newly diagnosed cancer patients are enrolled in clinical trials in the United States. Identifying an appropriate trial for a patient is time-consuming and cumbersome in the busy clinical practice. The Watson for Clinical Trial Matching (CTM) cognitive system uses AI to derive patient and cancer-related attributes from structured and unstructured text found in the electronic health record. These attributes are matched to complex eligibility criteria in clinical trial protocols.
Methods
In April 2019, a pilot study was launched to test the feasibility of implementing CTM in Gastrointestinal (GI) oncology at Mayo Clinic in Rochester, MN. Two clinical research coordinators (CRCs) screened patients for potential clinical trials prior to their clinic visits using both CTM and the traditional manual screening method. To avoid bias, each CRC screened a separate set of patients by both methods alternating which methodology was used first. The clinical trial match results were blinded to both CRCs. For each method, time to complete the screen and number of potential clinical trial matches were recorded.
Results
A total of 35 GI cancer patients with new diagnosis, recent resection or restaging scans were analyzed. Patients were evaluated against 50 GI-specific drug therapy and multi-disease phase I clinical trials. Clinical trial matching using CTM took an average of 10.1 minutes (Range: 4 to 20 min) per patient compared to an average of 30.5 minutes (Range: 5 to 75 min) per patient (p < 0.0001) using the manual method. CTM identified an average of 7.66 clinical trials (Range: 0-16) while the manual screening method identified an average of 1.97 clinical trials (Range: 0 to 6) per patient (p < 0.0001).
Conclusions
Implementation of Watson for CTM system with a CRC team may enable high volume patient screening for a large number of clinical trials in an efficient manner and promote awareness of clinical trial opportunities within the GI oncology practice. Further analysis to evaluate CTM accuracy and impact on enrollment is warranted and currently underway.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Mayo Clinic.
Disclosure
T. Haddad: Advisory / Consultancy: TerSera Therapeautics; Research grant / Funding (self): Takeda. S. Coverdill: Full / Part-time employment: IBM Watson Health; Shareholder / Stockholder / Stock options: IBM. M. Rammage: Full / Part-time employment: IBM Watson Health; Licensing / Royalties: IBM. All other authors have declared no conflicts of interest.
Resources from the same session
3842 - Effect of docetaxel-resistance on the reactivity of prostate cancer cells to metformin
Presenter: Jessica Catapano
Session: Poster Display session 3
Resources:
Abstract
5198 - Cell plasticity and taxanes resistance in metastatic prostate cancer: ESRP1 as a predictive biomarker of taxane response
Presenter: Natalia Jimenez
Session: Poster Display session 3
Resources:
Abstract
2981 - Effect of Selumetinib plus AZD8186 treatment on Cabazitaxel sensitivity in docetaxel-acquired resistant metastatic prostate cancer cell lines
Presenter: Vicenc Ruiz de Porras
Session: Poster Display session 3
Resources:
Abstract
2779 - Anti-tumor activity of cediranib, a pan-inhibitor of vascular endothelial growth factor receptors, in pancreatic ductal adenocarcinoma cells
Presenter: Majid Momeny
Session: Poster Display session 3
Resources:
Abstract
1782 - The molecular mechanisms of EpCAM in regulating tumor progression and development of anti-EpCAM antibodies for colon cancer diagnosis and therapy
Presenter: Han-chung Wu
Session: Poster Display session 3
Resources:
Abstract
1322 - Detection of microRNAs as biomarker for anti-EGFR antibody resistance in colon cancer patients
Presenter: Jens Hahne
Session: Poster Display session 3
Resources:
Abstract
1579 - Serum exosomal microRNA-199b-5p as a novel circulating biomarker to predict response of preoperative chemoradiotherapy for locally advanced rectal cancer
Presenter: Dong Won Baek
Session: Poster Display session 3
Resources:
Abstract
1761 - Live biobank of patient-derived organoids from Thai colorectal cancer patients enables clinical outcome prediction
Presenter: Pariyada Tanjak
Session: Poster Display session 3
Resources:
Abstract
3542 - The biological implications of PDCD6 dysregulation in colorectal cancer
Presenter: Romina Briffa
Session: Poster Display session 3
Resources:
Abstract
4634 - Comparative molecular analyses between microsatellite stable BRAFV600E mutant colorectal cancers and BRAFV600E mutant melanomas.
Presenter: Mohamed Salem
Session: Poster Display session 3
Resources:
Abstract