Abstract 144P
Background
Paclitaxel is commonly used as second-line therapy in advanced gastric cancer (AGC). The decision to proceed with second-line chemotherapy and select a chemotherapy regimen may be critical in vulnerable AGC patients after progression with first-line chemotherapy. However, there are no predictive biomarkers to identify patients with AGC who benefit from paclitaxel-based chemotherapy.
Methods
This study included 288 patients with AGC receiving second-line paclitaxel-based chemotherapy between 2017 and 2022 from K-MASTER project, a nationwide, government-funded precision medicine initiative. The data included clinicogenomic factors: clinical (age [young-onset vs. others], sex, histology [intestinal vs. diffuse type], prior trastuzumab use, duration of first-line chemotherapy, etc.) and genomic factors (pathogenic or likely pathogenic variants). The data were randomly divided into training and test sets (0.8:0.2). Three machine-learning methods, including random forest (RF), logistic regression (LR), and artificial neural network with genetic embedding (ANN) models, were used to develop the prediction model and were validated in the test sets.
Results
The median age was 64 years (range, 25-91) and 65.6% were male. A total of 288 patients were divided into training (n=230) and test sets (n=58). There were no significant differences in baseline characteristics between training and test sets. In the training set, the AUC for prediction of progression-free survival (PFS) with paclitaxel-based chemotherapy was 0.51, 0.73, and 0.75 in RF, LR, and ANN models, respectively. In the test set, the Kaplan-Meier curves of PFS were separated according to the three models: 2.8 vs. 1.5 months (P=0.07) in RF, 2.3 vs. 6.5 months (P=0.07) in LR, and 2.1 vs. 7.6 months (P=0.02) in ANN models.
Conclusions
These machine-learning models integrated clinical and genomic factors and can guide the selection of patients with AGC with a greater likelihood of a benefit from second-line paclitaxel-based chemotherapy. Further studies are necessary to validate and update these models in independent datasets in future.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
540P - Phase III study of serplulimab plus chemotherapy as first-line therapy for advanced squamous non-small cell lung cancer: ASTRUM-004 Asian subgroup
Presenter: Caicun Zhou
Session: Poster Display
Resources:
Abstract
541P - Integrated analysis of randomized controlled trials IMpower130 and IMpower132 for advanced non-squamous non-small cell lung cancer (NSCLC)
Presenter: Hibiki Udagawa
Session: Poster Display
Resources:
Abstract
542P - First-line HLX07 plus serplulimab with or without chemotherapy versus serplulimab plus chemotherapy in advanced/recurrent squamous non-small cell lung cancer: A phase II study
Presenter: Zhen Wang
Session: Poster Display
Resources:
Abstract
543P - A multicenter retrospective study to investigate risk factors for immune checkpoint inhibitor-induced pneumonitis in non-small cell lung cancer patients with comorbid interstitial pneumonia
Presenter: Yuriko Ishida
Session: Poster Display
Resources:
Abstract
544P - Single cell level investigation of blood cells representing immune checkpoint inhibitor response in lung adenocarcinoma patients
Presenter: Juyong Seong
Session: Poster Display
Resources:
Abstract
545P - Completion of pembrolizumab in advanced non-small cell lung cancer: Real-world outcomes after two years of therapy (COPILOT)
Presenter: Andrew Fantoni
Session: Poster Display
Resources:
Abstract
546P - Combination therapy with anti-PD-1 antibody plus angiokinase inhibitor exerts synergistic antitumor effect against malignant mesothelioma via tumor microenvironment modulation
Presenter: Akio Tada
Session: Poster Display
Resources:
Abstract
547P - Immunotherapy outcome in advanced/metastatic lung cancer patients in real-world experience: Indian data
Presenter: Naveen K
Session: Poster Display
Resources:
Abstract
548P - B-Myb acts as a mentor instant promoter in non-small cell lung cancer by modifying the PD-1/PD-L1 axis
Presenter: Pan Xu
Session: Poster Display
Resources:
Abstract
549P - Drug-induced interstitial lung disease in patients with non-small cell lung cancer treated with immunotherapy for postoperative recurrence: Evaluation of CT findings and histopathological findings of the background lung
Presenter: shodai fujimoto
Session: Poster Display
Resources:
Abstract