Abstract 144P
Background
Paclitaxel is commonly used as second-line therapy in advanced gastric cancer (AGC). The decision to proceed with second-line chemotherapy and select a chemotherapy regimen may be critical in vulnerable AGC patients after progression with first-line chemotherapy. However, there are no predictive biomarkers to identify patients with AGC who benefit from paclitaxel-based chemotherapy.
Methods
This study included 288 patients with AGC receiving second-line paclitaxel-based chemotherapy between 2017 and 2022 from K-MASTER project, a nationwide, government-funded precision medicine initiative. The data included clinicogenomic factors: clinical (age [young-onset vs. others], sex, histology [intestinal vs. diffuse type], prior trastuzumab use, duration of first-line chemotherapy, etc.) and genomic factors (pathogenic or likely pathogenic variants). The data were randomly divided into training and test sets (0.8:0.2). Three machine-learning methods, including random forest (RF), logistic regression (LR), and artificial neural network with genetic embedding (ANN) models, were used to develop the prediction model and were validated in the test sets.
Results
The median age was 64 years (range, 25-91) and 65.6% were male. A total of 288 patients were divided into training (n=230) and test sets (n=58). There were no significant differences in baseline characteristics between training and test sets. In the training set, the AUC for prediction of progression-free survival (PFS) with paclitaxel-based chemotherapy was 0.51, 0.73, and 0.75 in RF, LR, and ANN models, respectively. In the test set, the Kaplan-Meier curves of PFS were separated according to the three models: 2.8 vs. 1.5 months (P=0.07) in RF, 2.3 vs. 6.5 months (P=0.07) in LR, and 2.1 vs. 7.6 months (P=0.02) in ANN models.
Conclusions
These machine-learning models integrated clinical and genomic factors and can guide the selection of patients with AGC with a greater likelihood of a benefit from second-line paclitaxel-based chemotherapy. Further studies are necessary to validate and update these models in independent datasets in future.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
497P - Sintilimab in combination with anlotinib in advanced NSCLC treated with first-line PD-1 antibodies: An open, single-arm, phase II trial
Presenter: Ying Jin
Session: Poster Display
Resources:
Abstract
498P - Frailty-adjusted life expectancy and survival in older lung cancer patients: A large-scale electronic health-record based study
Presenter: Thao Tu
Session: Poster Display
Resources:
Abstract
499P - Long-term survival and treatment (tx) patterns after first-line (1L) osimertinib in patients (pts) with epidermal growth factor receptor (EGFR) mutation-positive (m) advanced non-small cell lung cancer (NSCLC): Japanese cohort of a global real-world (rw) observational study
Presenter: Daichi Fujimoto
Session: Poster Display
Resources:
Abstract
500P - The effectiveness and safety of durvalumab after chemoradiotherapy for locoregional recurrence of completely resected non-small cell lung cancer: Real-world, multicenter, observational study (NEJ056)
Presenter: Hidehito Horinouchi
Session: Poster Display
Resources:
Abstract
501P - One-year survival outcomes of unresectable stage III non-small cell lung cancer patients who underwent PD-1 inhibitor plus chemo as induction therapy
Presenter: Xin Wang
Session: Poster Display
Resources:
Abstract
502P - Impact of sarcopenia on the outcome of patients with locally advanced non-small cell lung cancer treated with chemoradiotherapy followed by durvalumab
Presenter: Kentaro Tamura
Session: Poster Display
Resources:
Abstract
503P - Clinical outcomes by infusion timing of immune checkpoint inhibitors in patients with locally advanced NSCLC
Presenter: TSUYOSHI HIRATA
Session: Poster Display
Resources:
Abstract
504P - Real-world outcomes with induction systemic therapy for stage III in eligible for upfront local therapy: Pre vs post immunotherapy era in a tertiary referral centre
Presenter: Praveen Kumar Marimuthu
Session: Poster Display
Resources:
Abstract
505P - Neoadjuvant PD-1 inhibitor (tislelizumab) plus platinum–etoposide in patients with limited-stage small cell lung cancer: A phase II trial
Presenter: Junjie Hu
Session: Poster Display
Resources:
Abstract
506P - Intrathoracic progression is still the most dominant failure pattern after first-line chemo-immunotherapy in extensive-stage small-cell lung cancer: Implications for thoracic radiotherapy
Presenter: Byoung Hyuck Kim
Session: Poster Display
Resources:
Abstract