Abstract 14P
Background
Classification of molecular subtypes of breast cancer is widely used in clinical decision-making, leading to different treatment responses and clinical outcomes. We classified molecular subtypes using a novel deep learning algorithm in whole-slide histopathological images (WSIs) with invasive ductal carcinoma of the breast.
Methods
We obtained 1,094 breast cancer cases with available hematoxylin and eosin-stained WSIs from the TCGA database. We applied a new deep learning algorithm for artificial neural networks (ANNs) that is completely different from the back-propagation method developed in previous studies.
Results
Our model based on the ANN algorithm had an accuracy of 67.8% for all datasets (training and testing), and the area under the receiver operating characteristic curve was 0.819 when classifying molecular subtypes of breast cancer. In approximately 30% of cases, the molecular subtype did not reflect the unique histological subtype, which lowered the accuracy. The set revealed relatively high sensitivity (70.5%) and specificity (84.4%).
Conclusions
Our approach involving this ANN model has favorable diagnostic performance for molecular classification of breast cancer based on WSIs and could provide reliable results for planning treatment strategies.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
17P - Initial outcomes of the ACT Now PRIME CARE for breast cancer: Prevention of Breast canceR (screening/ stage shifting) utilizing Integrated MobilE Clinics and pAtient Reported online Evaluations and Education
Presenter: Herdee Gloriane Luna
Session: Poster Display
Resources:
Abstract
18P - Optimizing premenopausal HR+ HER2–ve eBC management in India: Insights from expert consensus
Presenter: Anitha Ramesh
Session: Poster Display
Resources:
Abstract
19P - Referral patterns among breast cancer patients in county-level hospitals in China
Presenter: Ping Lu
Session: Poster Display
Resources:
Abstract
20P - Real-world treatment of HER2+ and HR+/HER2- early breast cancer in county areas of China
Presenter: Ping Lu
Session: Poster Display
Resources:
Abstract
21P - Duration of breast cancer trials: Analysis of predicted versus actual completion date
Presenter: Daniëlle Verschoor
Session: Poster Display
Resources:
Abstract
22P - Impact of an online Asian genetic risk calculator on risk perception: Cancer-related distress and uptake of genetic counselling among Malaysian breast cancer patients (The ARiCa Study)
Presenter: HEAMANTHAA Padmanabhan
Session: Poster Display
Resources:
Abstract
23P - Consensus statements and expert recommendations for BRCAm breast cancer in the Asia-Pacific region (STREAM-AP)
Presenter: Soo Chin Lee
Session: Poster Display
Resources:
Abstract
24P - Germline genetic testing for hereditary cancer: A retrospective analysis in a single site referral centre in Malaysia
Presenter: Vivian Lee
Session: Poster Display
Resources:
Abstract
25P - Clinical presentations and prognostication of HER2-low breast cancer in Taiwan
Presenter: Bo-Fang Chen
Session: Poster Display
Resources:
Abstract
26P - Subcutaneous trastuzumab versus intravenous trastuzumab for treatment of patients with HER2-positive breast cancer: A time, motion and cost-benefit assessment in a day care oncology unit in China
Presenter: Bei Sun
Session: Poster Display
Resources:
Abstract