Abstract 14P
Background
Classification of molecular subtypes of breast cancer is widely used in clinical decision-making, leading to different treatment responses and clinical outcomes. We classified molecular subtypes using a novel deep learning algorithm in whole-slide histopathological images (WSIs) with invasive ductal carcinoma of the breast.
Methods
We obtained 1,094 breast cancer cases with available hematoxylin and eosin-stained WSIs from the TCGA database. We applied a new deep learning algorithm for artificial neural networks (ANNs) that is completely different from the back-propagation method developed in previous studies.
Results
Our model based on the ANN algorithm had an accuracy of 67.8% for all datasets (training and testing), and the area under the receiver operating characteristic curve was 0.819 when classifying molecular subtypes of breast cancer. In approximately 30% of cases, the molecular subtype did not reflect the unique histological subtype, which lowered the accuracy. The set revealed relatively high sensitivity (70.5%) and specificity (84.4%).
Conclusions
Our approach involving this ANN model has favorable diagnostic performance for molecular classification of breast cancer based on WSIs and could provide reliable results for planning treatment strategies.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
102P - Enhancing colorectal cancer prevention in high-risk populations through faecal immunochemical test surveillance
Presenter: Li Xie
Session: Poster Display
Resources:
Abstract
103P - Anlotinib plus chemotherapy as first-line therapy for gastrointestinal tumor patients with unresectable liver metastasis: Updated results from a multi-cohort, multi-center phase II trial ALTER-G-001-cohort A
Presenter: Junwei Wu
Session: Poster Display
Resources:
Abstract
104P - The value of functional MR-imaging signature model for early prediction of chemotherapy response and its guidance for regimen adjustment to improve efficacy
Presenter: Wenhua Li
Session: Poster Display
Resources:
Abstract
105P - A single-arm, phase II, multicenter study of iparomlimab (QL1604) in patients (pts) with unresectable/metastatic deficient mismatch repair (dMMR)/microsatellite instability high (MSI-H) solid tumors
Presenter: Weijian Guo
Session: Poster Display
Resources:
Abstract
106P - Efficacy and safety of IBI351 (GFH925) monotherapy in metastatic colorectal cancer harboring KRASG12C mutation: Updated results from a pooled analysis of two phase I studies
Presenter: Ying Yuan
Session: Poster Display
Resources:
Abstract
107P - Tumor-stromal ratio in a new age fibroblast activated protein PET imaging as a biomarker for prediction of response to neoadjuvant chemoradiotherapy in carcinoma rectum
Presenter: swetha Suresh
Session: Poster Display
Resources:
Abstract
108P - Detection of HER2 overexpression in colorectal cancer: Comparison of a HANDLE classic NGS panel with standard IHC/FISH
Presenter: Lijuan Luan
Session: Poster Display
Resources:
Abstract
109P - Early onset metastatic colorectal cancer: Clinical-prognostic characteristics and correlation to molecular status
Presenter: Andrea Pretta
Session: Poster Display
Resources:
Abstract
110P - The correlation between multi-dimensional characteristics of circulating tumor cells (CTC) and treatment response in patients with initially unresectable metastatic colorectal cancer
Presenter: Yu Liu
Session: Poster Display
Resources:
Abstract
111P - Comparison of the efficacy and safety of fruquintinib and fruquintinib combined with immune checkpoint inhibitors in the treatment of metastatic microsatellite stable colorectal cancer: A real-world study
Presenter: Zhiqiang Wang
Session: Poster Display
Resources:
Abstract