Abstract 14P
Background
Classification of molecular subtypes of breast cancer is widely used in clinical decision-making, leading to different treatment responses and clinical outcomes. We classified molecular subtypes using a novel deep learning algorithm in whole-slide histopathological images (WSIs) with invasive ductal carcinoma of the breast.
Methods
We obtained 1,094 breast cancer cases with available hematoxylin and eosin-stained WSIs from the TCGA database. We applied a new deep learning algorithm for artificial neural networks (ANNs) that is completely different from the back-propagation method developed in previous studies.
Results
Our model based on the ANN algorithm had an accuracy of 67.8% for all datasets (training and testing), and the area under the receiver operating characteristic curve was 0.819 when classifying molecular subtypes of breast cancer. In approximately 30% of cases, the molecular subtype did not reflect the unique histological subtype, which lowered the accuracy. The set revealed relatively high sensitivity (70.5%) and specificity (84.4%).
Conclusions
Our approach involving this ANN model has favorable diagnostic performance for molecular classification of breast cancer based on WSIs and could provide reliable results for planning treatment strategies.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
144P - Integrated clinical and genomic models using machine-learning methods to predict the efficacy of paclitaxel-based chemotherapy in patients with advanced gastric cancer from K-MASTER project
Presenter: Jwa Hoon Kim
Session: Poster Display
Resources:
Abstract
145P - Tislelizumab (TIS) + chemotherapy (Chemo)/chemoradiotherapy (CRT) as neoadjuvant treatment for resectable esophageal squamous cell carcinoma (R-ESCC)
Presenter: Longqi Chen
Session: Poster Display
Resources:
Abstract
146P - Phase (ph) Ib results of bemarituzumab (BEMA) added to capecitabine/oxaliplatin (CAPOX) or S-1/oxaliplatin (SOX) with or without nivolumab (NIVO) for previously untreated advanced gastric/gastroesophageal junction cancer (G/GEJC): FORTITUDE-103 study
Presenter: Keun-Wook Lee
Session: Poster Display
Resources:
Abstract
147P - Four-year overall survival (OS) update from the phase III HIMALAYA study of tremelimumab plus durvalumab in unresectable hepatocellular carcinoma (uHCC)
Presenter: Stephen Chan
Session: Poster Display
Resources:
Abstract
148P - Safety and efficacy of atezolizumab (Atezo) + bevacizumab (Bev) in Japanese patients (pts) with unresectable hepatocellular carcinoma (uHCC): Preliminary analysis of a prospective, multicenter, observational study (ELIXIR)
Presenter: Teiji Kuzuya
Session: Poster Display
Resources:
Abstract
149P - A prospective observational study of MSI screening in unresectable chemotherapy-naïve advanced gastric cancer/gastroesophageal junction cancer: WJOG13320GPS
Presenter: Yukiya Narita
Session: Poster Display
Resources:
Abstract
150P - Anlotinib plus chemotherapy as first-line therapy for gastrointestinal tumor patients with unresectable liver metastasis: Updated results from a multi-cohort, multi-center phase II trial ALTER-G-001-cohort C
Presenter: Junwei Wu
Session: Poster Display
Resources:
Abstract
151P - Relationship between depth of response and early tumor shrinkage with overall survival in advanced pancreatic cancer
Presenter: EMIKA KUROKI
Session: Poster Display
Resources:
Abstract
152P - Interim analysis of the NAPOLEON-2 study: Safety evaluation of nanoliposomal irinotecan with fluorouracil and folinic acid for unresectable pancreatic cancer patients with prior biliary drainage
Presenter: Futa Koga
Session: Poster Display
Resources:
Abstract
153P - IMbrave150: Exploratory analyses for investigating associations between overall survival (OS) and depth of response (DpR) or duration of response (DoR) in patients (pts) with unresectable hepatocellular carcinoma (HCC)
Presenter: Masatoshi Kudo
Session: Poster Display
Resources:
Abstract