Abstract 623P
Background
Cancer ranks second globally in causes of death, accounting for 21% of all fatalities. However, many types of cancer can be cured if diagnosed and treated during early stages. We propose a liquid biopsy cancer analysis method that uses deep learning and a methylation-sensitive restriction enzyme digestion followed by sequencing method to detect and classify the most common cancers worldwide at early stages.
Methods
We developed a selective methylation sensitive restriction enzyme sequencing (MRE-Seq) method combined with a prediction model based on deep neural network (DNN) learning on data from 63,266 CpG sites to identify global hypomethylation patterns. The methylation dataset was made from 96 colon cancer samples, 95 lung cancer samples, 122 gastric cancer samples, 136 breast cancer samples, and 183 control samples. To eliminate batch bias, the ANOVA test was performed during feature selection. A DNN was adopted as a classifier, and 5-fold cross validation was performed to verify the classification performance.
Results
Across four cancer types, colorectal cancer had the highest predictive performance at 0.98, followed by breast cancer at 0.97, gastric cancer at 0.96, and lung cancer at 0.93. At 95% specificity, the sensitivity for detecting early-stage cancers varied widely, with lung cancer at 50% and breast cancer at 83%. Two different metrics were used to evaluate the model's performance. The cancer classifier (performance in detecting cancer) had a sensitivity of 95.1% and a specificity of 66.7%, indicating better performance in correctly identifying cancer samples. The cancer type classifier (performance in classifying the cancer type) utilized the precision metric to evaluate the accuracy of cancer classification. Notably, breast cancer achieved the highest precision at 95.8%, followed by lung cancer at 83.3%, gastric cancer at 79.1%, and colon cancer at 69.0%.
Conclusions
The proposed classification model based on the MRE-Seq method can reliably identify cancer and normal samples and differentiate between different cancer types using only methylation information obtained from patient's blood. This approach could be used in clinical practices to help medical experts diagnose cancer earlier and at the individual level.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
87TiP - Phase I expansion study of the tissue factor (TF)–targeting antibody-drug conjugate (ADC) XB002 as a single-agent and combination therapy in patients with advanced solid tumors (JEWEL-101)
Presenter: Mustafa Syed
Session: Poster Display
Resources:
Abstract
88TiP - A phase Ib study of HMBD-001, a monoclonal antibody targeting HER3, with or without chemotherapy in patients with genetic aberrations in HER3 signaling
Presenter: Nick Pavlakis
Session: Poster Display
Resources:
Abstract
93P - Efficacy and safety of fruquintinib (F) + best supportive care (BSC) vs placebo (P) + BSC in refractory metastatic colorectal cancer (mCRC): Asian vs non-Asian outcomes in FRESCO-2
Presenter: Daisuke Kotani
Session: Poster Display
Resources:
Abstract
94P - Sidedness-dependent prognostic impact of gene alterations in metastatic colorectal cancer in the nationwide cancer genome screening project in Japan (SCRUM-Japan GI-SCREEN)
Presenter: Takeshi Kajiwara
Session: Poster Display
Resources:
Abstract
95P - Interim results of a prospective randomized controlled study to compare the clinical outcomes of total neoadjuvant therapy vs long course chemoradiotherapy in locally advanced carcinoma rectum
Presenter: Sandip Barik
Session: Poster Display
Resources:
Abstract
96P - Tyrosine kinase inhibitor (TKI) plus PD-1 blockade in TKI-responsive MSS/pMMR metastatic colorectal adenocarcinoma (mCRC): Updated results of TRAP study
Presenter: Jingdong Zhang
Session: Poster Display
Resources:
Abstract
97P - Asian subgroup analysis of the phase III LEAP-017 trial of lenvatinib plus pembrolizumab vs standard-of-care in previously treated metastatic colorectal cancer (mCRC)
Presenter: Rui-Hua Xu
Session: Poster Display
Resources:
Abstract
98P - Real clinical impact of postoperative surgical complications after colon cancer surgery
Presenter: Toru Aoyama
Session: Poster Display
Resources:
Abstract
99P - Extended lymphadenectomy may not be necessary for MSI-H colon cancer patients after immunotherapy
Presenter: Rongxin Zhang
Session: Poster Display
Resources:
Abstract
100P - Identification of phenomic data in the pathogenesis of colorectal cancer: A UK biobank data analysis
Presenter: Shirin Hui Tan
Session: Poster Display
Resources:
Abstract