Abstract 623P
Background
Cancer ranks second globally in causes of death, accounting for 21% of all fatalities. However, many types of cancer can be cured if diagnosed and treated during early stages. We propose a liquid biopsy cancer analysis method that uses deep learning and a methylation-sensitive restriction enzyme digestion followed by sequencing method to detect and classify the most common cancers worldwide at early stages.
Methods
We developed a selective methylation sensitive restriction enzyme sequencing (MRE-Seq) method combined with a prediction model based on deep neural network (DNN) learning on data from 63,266 CpG sites to identify global hypomethylation patterns. The methylation dataset was made from 96 colon cancer samples, 95 lung cancer samples, 122 gastric cancer samples, 136 breast cancer samples, and 183 control samples. To eliminate batch bias, the ANOVA test was performed during feature selection. A DNN was adopted as a classifier, and 5-fold cross validation was performed to verify the classification performance.
Results
Across four cancer types, colorectal cancer had the highest predictive performance at 0.98, followed by breast cancer at 0.97, gastric cancer at 0.96, and lung cancer at 0.93. At 95% specificity, the sensitivity for detecting early-stage cancers varied widely, with lung cancer at 50% and breast cancer at 83%. Two different metrics were used to evaluate the model's performance. The cancer classifier (performance in detecting cancer) had a sensitivity of 95.1% and a specificity of 66.7%, indicating better performance in correctly identifying cancer samples. The cancer type classifier (performance in classifying the cancer type) utilized the precision metric to evaluate the accuracy of cancer classification. Notably, breast cancer achieved the highest precision at 95.8%, followed by lung cancer at 83.3%, gastric cancer at 79.1%, and colon cancer at 69.0%.
Conclusions
The proposed classification model based on the MRE-Seq method can reliably identify cancer and normal samples and differentiate between different cancer types using only methylation information obtained from patient's blood. This approach could be used in clinical practices to help medical experts diagnose cancer earlier and at the individual level.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
49P - Survival outcomes of HER2-positive breast cancer patients treated with neoadjuvant therapy at a single cancer centre in India
Presenter: Minit Shah
Session: Poster Display
Resources:
Abstract
50P - A nationwide retrospective cohort study of the response to neoadjuvant chemotherapy between HER-2 low and HER-2 negative non-metastatic breast cancer in Qatar: A real-world analysis
Presenter: Ahmed Kardousha
Session: Poster Display
Resources:
Abstract
51P - Four-year outcomes of hypofractionated postmastectomy radiation therapy of 39 Gy in 13 fractionations
Presenter: Sevinj Gahramanova
Session: Poster Display
Resources:
Abstract
52P - A comparative study to assess volumetric and dosimetric profile of heart and lung in patients undergoing left sided post mastectomy radiotherapy: Continuous positive airway pressure (CPAP) versus free breathing (FB) techniques
Presenter: Pritanjali Singh
Session: Poster Display
Resources:
Abstract
29P - HUWE1 inhibition has tumor suppressive effect in triple-negative breast cancer cell lines by modulating glycolytic and immune modulatory markers
Presenter: Shruti Kahol
Session: Poster Display
Resources:
Abstract
53P - Radiotherapy utilization rate for breast cancer in Indonesia: A call for empowering cancer care
Presenter: Donald Manuain
Session: Poster Display
Resources:
Abstract
58P - Safety and pharmacokinetics (PK) of vepdegestrant in Japanese patients with estrogen receptor (ER)+/human epidermal growth factor receptor 2 (HER2)- advanced breast cancer: Results from a Japanese phase I study
Presenter: Hiroji Iwata
Session: Poster Display
Resources:
Abstract
59P - Comprehensive genomic profiling (CGP) unravels druggable targets in breast carcinoma (BC): A single institutional experience
Presenter: Gautam Balaram
Session: Poster Display
Resources:
Abstract
60P - A study of gene alterations in Asian patients with late stage and recurrent breast cancer
Presenter: Po-Sheng Yang
Session: Poster Display
Resources:
Abstract
61P - Tumor cell-released autophagosomes (TRAPs) remodel the breast tumor microenvironment by inducing the formation of inflammatory cancer-associated fibroblasts (CAFs)
Presenter: Chengdong Wu
Session: Poster Display
Resources:
Abstract