Abstract 623P
Background
Cancer ranks second globally in causes of death, accounting for 21% of all fatalities. However, many types of cancer can be cured if diagnosed and treated during early stages. We propose a liquid biopsy cancer analysis method that uses deep learning and a methylation-sensitive restriction enzyme digestion followed by sequencing method to detect and classify the most common cancers worldwide at early stages.
Methods
We developed a selective methylation sensitive restriction enzyme sequencing (MRE-Seq) method combined with a prediction model based on deep neural network (DNN) learning on data from 63,266 CpG sites to identify global hypomethylation patterns. The methylation dataset was made from 96 colon cancer samples, 95 lung cancer samples, 122 gastric cancer samples, 136 breast cancer samples, and 183 control samples. To eliminate batch bias, the ANOVA test was performed during feature selection. A DNN was adopted as a classifier, and 5-fold cross validation was performed to verify the classification performance.
Results
Across four cancer types, colorectal cancer had the highest predictive performance at 0.98, followed by breast cancer at 0.97, gastric cancer at 0.96, and lung cancer at 0.93. At 95% specificity, the sensitivity for detecting early-stage cancers varied widely, with lung cancer at 50% and breast cancer at 83%. Two different metrics were used to evaluate the model's performance. The cancer classifier (performance in detecting cancer) had a sensitivity of 95.1% and a specificity of 66.7%, indicating better performance in correctly identifying cancer samples. The cancer type classifier (performance in classifying the cancer type) utilized the precision metric to evaluate the accuracy of cancer classification. Notably, breast cancer achieved the highest precision at 95.8%, followed by lung cancer at 83.3%, gastric cancer at 79.1%, and colon cancer at 69.0%.
Conclusions
The proposed classification model based on the MRE-Seq method can reliably identify cancer and normal samples and differentiate between different cancer types using only methylation information obtained from patient's blood. This approach could be used in clinical practices to help medical experts diagnose cancer earlier and at the individual level.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
143P - Ablation combined with tislelizumab in treating hepatocellular carcinoma: A phase II trial
Presenter: Yangxun Pan
Session: Poster Display
Resources:
Abstract
144P - Integrated clinical and genomic models using machine-learning methods to predict the efficacy of paclitaxel-based chemotherapy in patients with advanced gastric cancer from K-MASTER project
Presenter: Jwa Hoon Kim
Session: Poster Display
Resources:
Abstract
145P - Tislelizumab (TIS) + chemotherapy (Chemo)/chemoradiotherapy (CRT) as neoadjuvant treatment for resectable esophageal squamous cell carcinoma (R-ESCC)
Presenter: Longqi Chen
Session: Poster Display
Resources:
Abstract
146P - Phase (ph) Ib results of bemarituzumab (BEMA) added to capecitabine/oxaliplatin (CAPOX) or S-1/oxaliplatin (SOX) with or without nivolumab (NIVO) for previously untreated advanced gastric/gastroesophageal junction cancer (G/GEJC): FORTITUDE-103 study
Presenter: Keun-Wook Lee
Session: Poster Display
Resources:
Abstract
147P - Four-year overall survival (OS) update from the phase III HIMALAYA study of tremelimumab plus durvalumab in unresectable hepatocellular carcinoma (uHCC)
Presenter: Stephen Chan
Session: Poster Display
Resources:
Abstract
148P - Safety and efficacy of atezolizumab (Atezo) + bevacizumab (Bev) in Japanese patients (pts) with unresectable hepatocellular carcinoma (uHCC): Preliminary analysis of a prospective, multicenter, observational study (ELIXIR)
Presenter: Teiji Kuzuya
Session: Poster Display
Resources:
Abstract
149P - A prospective observational study of MSI screening in unresectable chemotherapy-naïve advanced gastric cancer/gastroesophageal junction cancer: WJOG13320GPS
Presenter: Yukiya Narita
Session: Poster Display
Resources:
Abstract
150P - Anlotinib plus chemotherapy as first-line therapy for gastrointestinal tumor patients with unresectable liver metastasis: Updated results from a multi-cohort, multi-center phase II trial ALTER-G-001-cohort C
Presenter: Junwei Wu
Session: Poster Display
Resources:
Abstract
151P - Relationship between depth of response and early tumor shrinkage with overall survival in advanced pancreatic cancer
Presenter: EMIKA KUROKI
Session: Poster Display
Resources:
Abstract
152P - Interim analysis of the NAPOLEON-2 study: Safety evaluation of nanoliposomal irinotecan with fluorouracil and folinic acid for unresectable pancreatic cancer patients with prior biliary drainage
Presenter: Futa Koga
Session: Poster Display
Resources:
Abstract