Abstract 623P
Background
Cancer ranks second globally in causes of death, accounting for 21% of all fatalities. However, many types of cancer can be cured if diagnosed and treated during early stages. We propose a liquid biopsy cancer analysis method that uses deep learning and a methylation-sensitive restriction enzyme digestion followed by sequencing method to detect and classify the most common cancers worldwide at early stages.
Methods
We developed a selective methylation sensitive restriction enzyme sequencing (MRE-Seq) method combined with a prediction model based on deep neural network (DNN) learning on data from 63,266 CpG sites to identify global hypomethylation patterns. The methylation dataset was made from 96 colon cancer samples, 95 lung cancer samples, 122 gastric cancer samples, 136 breast cancer samples, and 183 control samples. To eliminate batch bias, the ANOVA test was performed during feature selection. A DNN was adopted as a classifier, and 5-fold cross validation was performed to verify the classification performance.
Results
Across four cancer types, colorectal cancer had the highest predictive performance at 0.98, followed by breast cancer at 0.97, gastric cancer at 0.96, and lung cancer at 0.93. At 95% specificity, the sensitivity for detecting early-stage cancers varied widely, with lung cancer at 50% and breast cancer at 83%. Two different metrics were used to evaluate the model's performance. The cancer classifier (performance in detecting cancer) had a sensitivity of 95.1% and a specificity of 66.7%, indicating better performance in correctly identifying cancer samples. The cancer type classifier (performance in classifying the cancer type) utilized the precision metric to evaluate the accuracy of cancer classification. Notably, breast cancer achieved the highest precision at 95.8%, followed by lung cancer at 83.3%, gastric cancer at 79.1%, and colon cancer at 69.0%.
Conclusions
The proposed classification model based on the MRE-Seq method can reliably identify cancer and normal samples and differentiate between different cancer types using only methylation information obtained from patient's blood. This approach could be used in clinical practices to help medical experts diagnose cancer earlier and at the individual level.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
451P - The real-world efficacy and safety of anamorelin hydrochloride for Japanese unresectable non-small cell lung cancer patients with cachexia
Presenter: Daisuke Arai
Session: Poster Display
Resources:
Abstract
452P - The relationship between BCG immunotherapy and oxidative stress parameters in patients with non-muscle invasive bladder cancer
Presenter: Mukul Singh
Session: Poster Display
Resources:
Abstract
453P - Palonosetron plus megestrol acetate verses palonosetron plus dexamethasone in preventing moderately emetogenic chemotherapy-induced nausea and vomiting: A randomized, multicenter, crossover, phase II trial
Presenter: Qiaoqi Li
Session: Poster Display
Resources:
Abstract
454P - A multicenter randomized open-label phase II study investigating optimal antiemetic therapy for patients with advanced/recurrent gastric cancer treated with trastuzumab deruxtecan (T-DXd): EN-hance study
Presenter: Akira Ooki
Session: Poster Display
Resources:
Abstract
455P - Assessing model-predicted neurokinin-1 (NK1) receptor occupancy (RO) of netupitant to support efficacy over an extended time period
Presenter: Matti Aapro
Session: Poster Display
Resources:
Abstract
456P - Oxycodone/naloxone in moderate-to-severe cancer pain: A phase III study in China
Presenter: Ping Lu
Session: Poster Display
Resources:
Abstract
457P - Anticoagulation for terminal cancer patients with cancer associated venous thromboembolism
Presenter: Sang Bo Oh
Session: Poster Display
Resources:
Abstract
458P - Association between TSPAN15 and SLC44A2 genetic polymorphisms and venous thromboembolism in cancer patients
Presenter: Alshimaa Al Hanafy
Session: Poster Display
Resources:
Abstract
459P - Association between national health screening program and undertreatment of dyslipidemia in cancer survivors: A cross-sectional study
Presenter: Sujeong Shin
Session: Poster Display
Resources:
Abstract
460P - Group to grow: A systematic review of group-based interventions for post-traumatic growth on cancer patients
Presenter: Dyta William
Session: Poster Display
Resources:
Abstract