Abstract 623P
Background
Cancer ranks second globally in causes of death, accounting for 21% of all fatalities. However, many types of cancer can be cured if diagnosed and treated during early stages. We propose a liquid biopsy cancer analysis method that uses deep learning and a methylation-sensitive restriction enzyme digestion followed by sequencing method to detect and classify the most common cancers worldwide at early stages.
Methods
We developed a selective methylation sensitive restriction enzyme sequencing (MRE-Seq) method combined with a prediction model based on deep neural network (DNN) learning on data from 63,266 CpG sites to identify global hypomethylation patterns. The methylation dataset was made from 96 colon cancer samples, 95 lung cancer samples, 122 gastric cancer samples, 136 breast cancer samples, and 183 control samples. To eliminate batch bias, the ANOVA test was performed during feature selection. A DNN was adopted as a classifier, and 5-fold cross validation was performed to verify the classification performance.
Results
Across four cancer types, colorectal cancer had the highest predictive performance at 0.98, followed by breast cancer at 0.97, gastric cancer at 0.96, and lung cancer at 0.93. At 95% specificity, the sensitivity for detecting early-stage cancers varied widely, with lung cancer at 50% and breast cancer at 83%. Two different metrics were used to evaluate the model's performance. The cancer classifier (performance in detecting cancer) had a sensitivity of 95.1% and a specificity of 66.7%, indicating better performance in correctly identifying cancer samples. The cancer type classifier (performance in classifying the cancer type) utilized the precision metric to evaluate the accuracy of cancer classification. Notably, breast cancer achieved the highest precision at 95.8%, followed by lung cancer at 83.3%, gastric cancer at 79.1%, and colon cancer at 69.0%.
Conclusions
The proposed classification model based on the MRE-Seq method can reliably identify cancer and normal samples and differentiate between different cancer types using only methylation information obtained from patient's blood. This approach could be used in clinical practices to help medical experts diagnose cancer earlier and at the individual level.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
471TiP - A group sequential, response-adaptive randomized double-blinded clinical trial to evaluate add-on olanzapine plus pregabalin to prevent chemotherapy-induced nausea and vomiting (CINV ) in patients belonging to low socio-economic status
Presenter: Mathan Ramasubbu
Session: Poster Display
Resources:
Abstract
472P - Risk of recurrence and optimal adjuvant treatment in invasive lung adenocarcinomas manifesting as radiological part-solid nodules
Presenter: Yang Wo
Session: Poster Display
Resources:
Abstract
473P - Treatment (tx) patterns in resectable stage IA–IIIA non-small cell lung cancer (NSCLC) in China: Subgroup analysis of a global real-world (rw) study
Presenter: Chih-Chi Yang
Session: Poster Display
Resources:
Abstract
474P - The efficacy of image guided coil localisation for surgical resection of undiagnosed solitary lung nodule
Presenter: Jun Rey Leong
Session: Poster Display
Resources:
Abstract
475P - 5-year overall survival and disease free survival outcome between lobectomy and segmentectomy for early stage lung cancer in a mixed Asian population
Presenter: Jianye Chen
Session: Poster Display
Resources:
Abstract
478P - Peri-operative risks in curative lung resection of early stage primary lung cancer patients above 70 years old in a mixed Asian population
Presenter: Ian Goh
Session: Poster Display
Resources:
Abstract
480P - Aumolertinib as adjuvant therapy for resectable stage I-III EGFR-mutant NSCLC: Also effective in EGFR co-mutation
Presenter: Lin Wu
Session: Poster Display
Resources:
Abstract
481P - Comparative analysis of three NGS platforms assessing tumor mutational burden and mutational landscape in resectable non-small cell lung cancer
Presenter: Jii Bum Lee
Session: Poster Display
Resources:
Abstract
482P - Prevalence of EGFR mutations (EGFRm) and its subtypes in patients (pts) with resected stage I-III NSCLC: Results from EARLY-EGFR Singapore cohort
Presenter: Puey Ling Chia
Session: Poster Display
Resources:
Abstract
483P - Genetic profiles and evolutionary trajectory of early stage lung adenocarcinoma (AAH, AIS, MIA and IAC) revealed by multiplex sequecing
Presenter: lixuan lin
Session: Poster Display
Resources:
Abstract