Abstract 623P
Background
Cancer ranks second globally in causes of death, accounting for 21% of all fatalities. However, many types of cancer can be cured if diagnosed and treated during early stages. We propose a liquid biopsy cancer analysis method that uses deep learning and a methylation-sensitive restriction enzyme digestion followed by sequencing method to detect and classify the most common cancers worldwide at early stages.
Methods
We developed a selective methylation sensitive restriction enzyme sequencing (MRE-Seq) method combined with a prediction model based on deep neural network (DNN) learning on data from 63,266 CpG sites to identify global hypomethylation patterns. The methylation dataset was made from 96 colon cancer samples, 95 lung cancer samples, 122 gastric cancer samples, 136 breast cancer samples, and 183 control samples. To eliminate batch bias, the ANOVA test was performed during feature selection. A DNN was adopted as a classifier, and 5-fold cross validation was performed to verify the classification performance.
Results
Across four cancer types, colorectal cancer had the highest predictive performance at 0.98, followed by breast cancer at 0.97, gastric cancer at 0.96, and lung cancer at 0.93. At 95% specificity, the sensitivity for detecting early-stage cancers varied widely, with lung cancer at 50% and breast cancer at 83%. Two different metrics were used to evaluate the model's performance. The cancer classifier (performance in detecting cancer) had a sensitivity of 95.1% and a specificity of 66.7%, indicating better performance in correctly identifying cancer samples. The cancer type classifier (performance in classifying the cancer type) utilized the precision metric to evaluate the accuracy of cancer classification. Notably, breast cancer achieved the highest precision at 95.8%, followed by lung cancer at 83.3%, gastric cancer at 79.1%, and colon cancer at 69.0%.
Conclusions
The proposed classification model based on the MRE-Seq method can reliably identify cancer and normal samples and differentiate between different cancer types using only methylation information obtained from patient's blood. This approach could be used in clinical practices to help medical experts diagnose cancer earlier and at the individual level.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
183P - Final analysis of phase II clinical study evaluating the safety and effectiveness of neoadjuvant S-1 + oxaliplatin combination therapy for older patients with locally advanced gastric cancer
Presenter: Eiji Oki
Session: Poster Display
Resources:
Abstract
184P - Neutropenia as a predictive and prognostic factor in nanoliposomal-irinotecan/fluorouracil/leucovorin therapy for pancreatic cancer: Findings from the NAPOLEON-2 study (NN-2301)
Presenter: Yuki Sonoda
Session: Poster Display
Resources:
Abstract
185P - Disease etiology impact on outcomes of hepatocellular carcinoma patients treated with atezolizumab plus bevacizumab: A real-world, multicenter study
Presenter: Silvia Foti
Session: Poster Display
Resources:
Abstract
186P - Efficacy and safety of fruquintinib with nab-paclitaxel in advanced G/GEJ cancer after exposure to immune checkpoint inhibitors: A single-center prospective clinical trial
Presenter: Xiaoting Ma
Session: Poster Display
Resources:
Abstract
187P - Neoadjuvant cadonilimab (PD-1/CTLA-4 bispecific antibody) plus transhepatic arterial infusion chemotherapy (HAIC) for resectable multinodular CNLC Ib/IIa hepatocellular carcinoma (Car-Hero)
Presenter: Yongguang Wei
Session: Poster Display
Resources:
Abstract
188P - Impact of metformin, statin, aspirin and insulin on the prognosis of unresectable HCC patients receiving first-line lenvatinib or atezolizumab plus bevacizumab
Presenter: Margherita Rimini
Session: Poster Display
Resources:
Abstract
189P - Safety run-in results from LEAP-014: First-line lenvatinib (len) plus pembrolizumab (pembro) and chemotherapy (chemo) for metastatic esophageal squamous cell carcinoma (ESCC)
Presenter: Shun Yamamoto
Session: Poster Display
Resources:
Abstract
190P - Perioperative camrelizumab combined with chemotherapy for locally advanced gastric or gastroesophageal junction adenocarcinoma: A single-arm, single-center, phase II clinical trial
Presenter: Jiaxing He
Session: Poster Display
Resources:
Abstract
191P - Predictive value of CXCR6 expression in gastric cancer survival and immune modulation
Presenter: Song-Hee han
Session: Poster Display
Resources:
Abstract
192P - Antiangiogenesis-related adverse events (ARAE) to predict efficacy in patients with advanced gastric cancer (AGC) treated with apatinib + chemotherapy: Results from two prospective studies
Presenter: Rongbo Lin
Session: Poster Display
Resources:
Abstract