Abstract 623P
Background
Cancer ranks second globally in causes of death, accounting for 21% of all fatalities. However, many types of cancer can be cured if diagnosed and treated during early stages. We propose a liquid biopsy cancer analysis method that uses deep learning and a methylation-sensitive restriction enzyme digestion followed by sequencing method to detect and classify the most common cancers worldwide at early stages.
Methods
We developed a selective methylation sensitive restriction enzyme sequencing (MRE-Seq) method combined with a prediction model based on deep neural network (DNN) learning on data from 63,266 CpG sites to identify global hypomethylation patterns. The methylation dataset was made from 96 colon cancer samples, 95 lung cancer samples, 122 gastric cancer samples, 136 breast cancer samples, and 183 control samples. To eliminate batch bias, the ANOVA test was performed during feature selection. A DNN was adopted as a classifier, and 5-fold cross validation was performed to verify the classification performance.
Results
Across four cancer types, colorectal cancer had the highest predictive performance at 0.98, followed by breast cancer at 0.97, gastric cancer at 0.96, and lung cancer at 0.93. At 95% specificity, the sensitivity for detecting early-stage cancers varied widely, with lung cancer at 50% and breast cancer at 83%. Two different metrics were used to evaluate the model's performance. The cancer classifier (performance in detecting cancer) had a sensitivity of 95.1% and a specificity of 66.7%, indicating better performance in correctly identifying cancer samples. The cancer type classifier (performance in classifying the cancer type) utilized the precision metric to evaluate the accuracy of cancer classification. Notably, breast cancer achieved the highest precision at 95.8%, followed by lung cancer at 83.3%, gastric cancer at 79.1%, and colon cancer at 69.0%.
Conclusions
The proposed classification model based on the MRE-Seq method can reliably identify cancer and normal samples and differentiate between different cancer types using only methylation information obtained from patient's blood. This approach could be used in clinical practices to help medical experts diagnose cancer earlier and at the individual level.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
203P - Neoadjuvant durvalumab plus chemotherapy for resectable locally advanced esophageal squamous cell carcinoma (ESCC)
Presenter: Jia He
Session: Poster Display
Resources:
Abstract
204P - A radiomics strategy based on CT intra-tumoral and peritumoral regions for preoperative prediction of neoadjuvant chemoradiotherapy for esophageal cancer
Presenter: zhiyang li
Session: Poster Display
Resources:
Abstract
205TiP - IMPACT: Randomized, multicenter, phase III study evaluating the efficacy of immunotherapy (atezolizumab) plus anti-VEGF therapy (bevacizumab) in combination with transcatheter arterial chemoembolization for unresectable hepatocellular carcinoma (HCC)
Presenter: Tatsuya Yamashita
Session: Poster Display
Resources:
Abstract
206TiP - SIERRA: A phase IIIb, single-arm, multicentre study of tremelimumab plus durvalumab for first-line treatment of advanced unresectable hepatocellular carcinoma
Presenter: Stephen Chan
Session: Poster Display
Resources:
Abstract
207TiP - A two-arm randomized open-label prospective design superiority phase III clinical trial to compare the efficacy of docetaxel-oxaliplatin-capecitabine/ 5 -fluorouracil (DOC/F) followed by docetaxel versus CAPOX/mFOLFOX-7 in advanced gastric cancers
Presenter: Prabhat Bhargava
Session: Poster Display
Resources:
Abstract
212P - Mutational landscape and characteristics of ERBB2 in urothelial carcinoma
Presenter: Mingwei Li
Session: Poster Display
Resources:
Abstract
213P - Prognostic significance of absolute lymphocyte count in patients with metastatic renal cell carcinoma treated with first-line combination immunotherapies: Results from the International metastatic renal cell carcinoma database consortium (IMDC)
Presenter: Kosuke Takemura
Session: Poster Display
Resources:
Abstract
214P - Development and prospective validation of a multiplex RNA urine test for noninvasive detection and surveillance of urothelial carcinoma
Presenter: Hua Xu
Session: Poster Display
Resources:
Abstract
215P - Real-world outcomes of first-line tislelizumab plus axitinib in patients with metastatic non-clear cell renal cell carcinoma (mnccRCC)
Presenter: Pei Dong
Session: Poster Display
Resources:
Abstract
216P - Preliminary efficacy and safety results from ‘ReBirth’: A phase II study of risk-based bladder-sparing therapy for MIBC
Presenter: Yijun Shen
Session: Poster Display
Resources:
Abstract