Abstract 623P
Background
Cancer ranks second globally in causes of death, accounting for 21% of all fatalities. However, many types of cancer can be cured if diagnosed and treated during early stages. We propose a liquid biopsy cancer analysis method that uses deep learning and a methylation-sensitive restriction enzyme digestion followed by sequencing method to detect and classify the most common cancers worldwide at early stages.
Methods
We developed a selective methylation sensitive restriction enzyme sequencing (MRE-Seq) method combined with a prediction model based on deep neural network (DNN) learning on data from 63,266 CpG sites to identify global hypomethylation patterns. The methylation dataset was made from 96 colon cancer samples, 95 lung cancer samples, 122 gastric cancer samples, 136 breast cancer samples, and 183 control samples. To eliminate batch bias, the ANOVA test was performed during feature selection. A DNN was adopted as a classifier, and 5-fold cross validation was performed to verify the classification performance.
Results
Across four cancer types, colorectal cancer had the highest predictive performance at 0.98, followed by breast cancer at 0.97, gastric cancer at 0.96, and lung cancer at 0.93. At 95% specificity, the sensitivity for detecting early-stage cancers varied widely, with lung cancer at 50% and breast cancer at 83%. Two different metrics were used to evaluate the model's performance. The cancer classifier (performance in detecting cancer) had a sensitivity of 95.1% and a specificity of 66.7%, indicating better performance in correctly identifying cancer samples. The cancer type classifier (performance in classifying the cancer type) utilized the precision metric to evaluate the accuracy of cancer classification. Notably, breast cancer achieved the highest precision at 95.8%, followed by lung cancer at 83.3%, gastric cancer at 79.1%, and colon cancer at 69.0%.
Conclusions
The proposed classification model based on the MRE-Seq method can reliably identify cancer and normal samples and differentiate between different cancer types using only methylation information obtained from patient's blood. This approach could be used in clinical practices to help medical experts diagnose cancer earlier and at the individual level.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
217P - Conditional reprogramming of urine-derived bladder cancer cells: A model for precision medicine
Presenter: Yu Dong
Session: Poster Display
Resources:
Abstract
218P - Clinical effectiveness of tislelizumab combined with gemcitabine/cisplatin (GC) versus GC as adjuvant therapy in high-risk muscle-invasive urothelial carcinoma (MIUC): A real-world study
Presenter: xingliang Tan
Session: Poster Display
Resources:
Abstract
219P - Clinical effectiveness of tislelizumab plus TKI as first-line therapy in patients with metastatic renal cell carcinoma (mRCC): A real-world study
Presenter: Pei Dong
Session: Poster Display
Resources:
Abstract
220P - Heterogeneity in tertiary lymphoid structures predicts distinct prognosis and immune microenvironment characterizations of clear cell renal cell carcinoma
Presenter: Wenhao Xu
Session: Poster Display
Resources:
Abstract
221P - Genetic polymorphism of genes encoding cytokines interleukin1 1-alpha and TNF-alpha in non-muscle invasive bladder cancer
Presenter: Anil Kumar
Session: Poster Display
Resources:
Abstract
222P - The association between response to enfortumab vedotin and peripheral neuropathy: A multicenter retrospective study in Japan
Presenter: Nozomi Hayakawa
Session: Poster Display
Resources:
Abstract
223P - Patient and healthcare practitioner preferences for treatments in advanced renal cell carcinoma
Presenter: Niara Oliveira
Session: Poster Display
Resources:
Abstract
224P - WUTSUP-01: Phase II trial of neoadjuvant toripalimab and chemotherapy in locally advanced upper tract urothelial carcinoma
Presenter: Yige Bao
Session: Poster Display
Resources:
Abstract
225P - A novel multianalyte signature for stratifying Indian non-muscle invasive bladder cancer: A single center observational study
Presenter: Hari P S
Session: Poster Display
Resources:
Abstract
226P - Prognosis stratification of immunotherapy by a mutational signature in urothelial carcinoma
Presenter: Xuebing Han
Session: Poster Display
Resources:
Abstract