Abstract 620P
Background
Cancer constitutes a major burden to global health and the critical role of early diagnosis for cancer management is self-evident. Even though various miRNA-based signatures have been developed, their clinical utilization is limited due to various reasons. In this article, we innovatively developed a signature based on pairwise expression of miRNAs (miRPs) for pan-cancer diagnosis using machine learning approach.
Methods
miRNA spectrum of 15832 patients with 13 different cancers from 10 cohorts were analyzed. 15148 patients were divided into training, validation, and test sets with a ratio of 7:2:1, while 648 patients were utilized as external test. Pairwise comparison was performed to generate miRP score, defined by the comparison between two miRNAs, in training set. Five different machine-learning (ML) algorithms (XGBoost, SVM, RandomForest, LASSO, and Logistic) were adopted for signature construction. The best ML algorithm and the optimal number of miRPs included were identified using AUC and youden index in validation. Performance of the ideal model was evaluated in test and external set based on AUC, Youden index, positive predictive value (PPV), negative predictive value (NPV), sensitivity, specificity, and accuracy. The AUC of entire cohorts was compared to previously published 25 signatures.
Results
The Random Forest approach including 31 miRPs (31-miRP) outperformed others and was retained for further evaluation. The AUC of 31-miRP ranges 0.980-1.000 in different set. Remarkably, 31-miRP exhibited advantages in differentiating different cancers from normal tissues. Moreover, 31-miRP demonstrate superiorities in detecting early-stage cancers, with AUC ranging from 0.961-0.998. Compared to previously published 25 different signatures, 31-miRP also demonstrated clear advantages. Remarkably, 31-miRP also exhibited promising capabilities in differentiating cancers from corresponding benign lesions.
Conclusions
The 31-miRP exhibited outstanding diagnostic performance, characterized by high accuracy and sensitivity, thereby holding potential as a reliable tool for cancer diagnosis at early stage. Nevertheless, its effectiveness still warrants further investigation in real-world setting in future.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
CAMS Innovation Fund for Medical Sciences (No.2021-I2M-1-050); National Natural Science Foundation for Young Scientists of China (No. 82203025).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
570P - First-line osimertinib for patients with advanced NSCLC harboring EGFR mutations: A real-world study
Presenter: Wenxiang Ji
Session: Poster Display
Resources:
Abstract
571P - Dacomitinib in treatment-naïve EGFR-mutant NSCLC patients with multiple brain metastases: Initial efficacy and safety data from a phase II study
Presenter: Yongfeng Yu
Session: Poster Display
Resources:
Abstract
572P - Multivariable five-year survival prediction model for prognosing patients with EGFR-mutated NSCLC treated with EGFR-TKIs
Presenter: Qi-An Wang
Session: Poster Display
Resources:
Abstract
573P - LUMINATE-103: Real-world treatment patterns and outcomes of patients (pts) with epidermal growth factor receptor mutant (EGFR MU), non-squamous (NSQ) locally advanced/metastatic non-small cell lung cancer (a/mNSCLC): Pooled analysis of large US electronic health record (EHR) datasets
Presenter: Byoung Chul Cho
Session: Poster Display
Resources:
Abstract
574P - Efficacy and safety of dacomitinib in treatment-naïve patients with advanced NSCLC harboring uncommon EGFR mutations
Presenter: Lin Wu
Session: Poster Display
Resources:
Abstract
575P - Efficacy and safety of dacomitinib in treatment-naïve patients with advanced NSCLC and brain metastasis: A multicenter cohort study
Presenter: Puyuan Xing
Session: Poster Display
Resources:
Abstract
576P - Clonality of both EGFR and co-occurring TP53 mutations affect the treatment efficacy of the third-generation EGFR-TKIs in advanced-stage EGFR-mutant non-small cell lung cancer
Presenter: Wen Feng Fang
Session: Poster Display
Resources:
Abstract
577P - A study of the efficacy and safety of amivantamab in EGFR exon 20 insertion (E20I) mutations in NSCLC
Presenter: Daeho Choi
Session: Poster Display
Resources:
Abstract
578P - Tyrosine kinase inhibitor treatment of elderly patients with epidermal growth factor receptor mutated advanced non-small cell lung cancer: A multi-institute retrospective study
Presenter: Ling-Jen Hung
Session: Poster Display
Resources:
Abstract
579P - Real-world study of dacomitinib as first-line treatment for patients with EGFR-mutant non-small cell lung cancer
Presenter: Ji Eun Shin
Session: Poster Display
Resources:
Abstract