Abstract 620P
Background
Cancer constitutes a major burden to global health and the critical role of early diagnosis for cancer management is self-evident. Even though various miRNA-based signatures have been developed, their clinical utilization is limited due to various reasons. In this article, we innovatively developed a signature based on pairwise expression of miRNAs (miRPs) for pan-cancer diagnosis using machine learning approach.
Methods
miRNA spectrum of 15832 patients with 13 different cancers from 10 cohorts were analyzed. 15148 patients were divided into training, validation, and test sets with a ratio of 7:2:1, while 648 patients were utilized as external test. Pairwise comparison was performed to generate miRP score, defined by the comparison between two miRNAs, in training set. Five different machine-learning (ML) algorithms (XGBoost, SVM, RandomForest, LASSO, and Logistic) were adopted for signature construction. The best ML algorithm and the optimal number of miRPs included were identified using AUC and youden index in validation. Performance of the ideal model was evaluated in test and external set based on AUC, Youden index, positive predictive value (PPV), negative predictive value (NPV), sensitivity, specificity, and accuracy. The AUC of entire cohorts was compared to previously published 25 signatures.
Results
The Random Forest approach including 31 miRPs (31-miRP) outperformed others and was retained for further evaluation. The AUC of 31-miRP ranges 0.980-1.000 in different set. Remarkably, 31-miRP exhibited advantages in differentiating different cancers from normal tissues. Moreover, 31-miRP demonstrate superiorities in detecting early-stage cancers, with AUC ranging from 0.961-0.998. Compared to previously published 25 different signatures, 31-miRP also demonstrated clear advantages. Remarkably, 31-miRP also exhibited promising capabilities in differentiating cancers from corresponding benign lesions.
Conclusions
The 31-miRP exhibited outstanding diagnostic performance, characterized by high accuracy and sensitivity, thereby holding potential as a reliable tool for cancer diagnosis at early stage. Nevertheless, its effectiveness still warrants further investigation in real-world setting in future.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
CAMS Innovation Fund for Medical Sciences (No.2021-I2M-1-050); National Natural Science Foundation for Young Scientists of China (No. 82203025).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
560P - Triple-targeted therapy of dabrafenib, trametinib and osimertinib for the treatment of acquired BRAF V600E mutation after progression on EGFR-TKIs in advanced EGFR-mutant NSCLC
Presenter: Chengdi Weng
Session: Poster Display
Resources:
Abstract
561P - Mechanisms of osimertinib resistance using circulating tumor DNA analyses for EGFR-mutated non-small cell lung cancer, results from ELUCIDATOR: A prospective observational multicenter study
Presenter: Daijiro Harada
Session: Poster Display
Resources:
Abstract
562P - First-line (1L) osimertinib (osi) ± platinum-pemetrexed in patients (pts) with EGFRm advanced NSCLC: FLAURA2 China cohort
Presenter: Yan Yu
Session: Poster Display
Resources:
Abstract
563P - Real-world effectiveness and safety of first-line osimertinib for EGFR-mutated advanced NSCLC in China (FLOURISH study)
Presenter: Jianya Zhou
Session: Poster Display
Resources:
Abstract
564P - Co-occurring EGFR p.E709X mutation affects the treatment response to the third-generation EGFR-TKIs in EGFR p.G719X-mutant patients with advanced NSCLC
Presenter: Wen Feng Fang
Session: Poster Display
Resources:
Abstract
565P - Genome-guided targeted therapy combination improves survival in patients with advanced EGFR mutation positive NSCLC failing osimertinib
Presenter: Molly Li
Session: Poster Display
Resources:
Abstract
566P - Safety of tepotinib + osimertinib in EGFR-mutant NSCLC with MET amplification after first-line osimertinib
Presenter: Chong Kin Liam
Session: Poster Display
Resources:
Abstract
567P - Furmonertinib in combination with bevacizumab and intrathecal chemotherapy as later-line re-challenge treatment in EGFR –mutated NSCLC patients with leptomeningeal metastasis after third-generation EGFR-TKIs treatment failure
Presenter: Fang Cun
Session: Poster Display
Resources:
Abstract
568P - First-line (1L) osimertinib + platinum-pemetrexed in EGFR-mutated (EGFRm) advanced NSCLC: Updated FLAURA2 safety run-in (SRI) results
Presenter: David Planchard
Session: Poster Display
Resources:
Abstract
569P - Whole-transcriptome sequencing of transformed small-cell lung cancer from EGFR-mutated lung adenocarcinoma reveals LUAD–like and SCLC–like subsets
Presenter: Chan-Yuan Zhang
Session: Poster Display
Resources:
Abstract