Abstract 620P
Background
Cancer constitutes a major burden to global health and the critical role of early diagnosis for cancer management is self-evident. Even though various miRNA-based signatures have been developed, their clinical utilization is limited due to various reasons. In this article, we innovatively developed a signature based on pairwise expression of miRNAs (miRPs) for pan-cancer diagnosis using machine learning approach.
Methods
miRNA spectrum of 15832 patients with 13 different cancers from 10 cohorts were analyzed. 15148 patients were divided into training, validation, and test sets with a ratio of 7:2:1, while 648 patients were utilized as external test. Pairwise comparison was performed to generate miRP score, defined by the comparison between two miRNAs, in training set. Five different machine-learning (ML) algorithms (XGBoost, SVM, RandomForest, LASSO, and Logistic) were adopted for signature construction. The best ML algorithm and the optimal number of miRPs included were identified using AUC and youden index in validation. Performance of the ideal model was evaluated in test and external set based on AUC, Youden index, positive predictive value (PPV), negative predictive value (NPV), sensitivity, specificity, and accuracy. The AUC of entire cohorts was compared to previously published 25 signatures.
Results
The Random Forest approach including 31 miRPs (31-miRP) outperformed others and was retained for further evaluation. The AUC of 31-miRP ranges 0.980-1.000 in different set. Remarkably, 31-miRP exhibited advantages in differentiating different cancers from normal tissues. Moreover, 31-miRP demonstrate superiorities in detecting early-stage cancers, with AUC ranging from 0.961-0.998. Compared to previously published 25 different signatures, 31-miRP also demonstrated clear advantages. Remarkably, 31-miRP also exhibited promising capabilities in differentiating cancers from corresponding benign lesions.
Conclusions
The 31-miRP exhibited outstanding diagnostic performance, characterized by high accuracy and sensitivity, thereby holding potential as a reliable tool for cancer diagnosis at early stage. Nevertheless, its effectiveness still warrants further investigation in real-world setting in future.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
CAMS Innovation Fund for Medical Sciences (No.2021-I2M-1-050); National Natural Science Foundation for Young Scientists of China (No. 82203025).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
549P - Drug-induced interstitial lung disease in patients with non-small cell lung cancer treated with immunotherapy for postoperative recurrence: Evaluation of CT findings and histopathological findings of the background lung
Presenter: shodai fujimoto
Session: Poster Display
Resources:
Abstract
551P - Real-world incidence and outcomes of immune-related adverse events in NSCLC patients
Presenter: Andrea Knox
Session: Poster Display
Resources:
Abstract
552P - TROPION-Lung05: Datopotamab deruxtecan (Dato-DXd) in Asian patients (pts) with previously treated non-small cell lung cancer (NSCLC) with actionable genomic alterations (AGAs)
Presenter: Yasushi Goto
Session: Poster Display
Resources:
Abstract
553P - Preceding plasma EGFR vs upfront tissue NGS for advanced NSCLC in the Chinese population: A single centre experience in Hong Kong
Presenter: Janet Du
Session: Poster Display
Resources:
Abstract
554P - Comparison of the analytical performance of endobronchial ultrasound-guided transbronchial needle aspiration and other sampling methods for the Oncomine Dx target test: An observational study
Presenter: Kazuhito Miyazaki
Session: Poster Display
Resources:
Abstract
555P - Quality of life in patients with stage IV non-small cell lung cancer and the influence of druggable mutations over time: A prospective, territory-wide study in Hong Kong
Presenter: Jason C S Ho
Session: Poster Display
Resources:
Abstract
556P - Results from the phase I study on efficacy and safety of iruplinalkib (WX-0593) for anaplastic lymphoma kinase (ALK)-positive advanced non-small cell lung cancer (NSCLC) patients who received prior second-generation ALK tyrosine kinase inhibitors (TKIs)
Presenter: xuezhi Hao
Session: Poster Display
Resources:
Abstract
557P - Longitudinal plasma proteomic profiling of EML4-ALK positive lung cancer receiving ALK-TKIs therapy
Presenter: Shasha Wang
Session: Poster Display
Resources:
Abstract
558P - Treatment duration and adherence of brigatinib as second-line treatment after crizotinib for ALK+ NSCLC in South Korea
Presenter: Jeong Eun Lee
Session: Poster Display
Resources:
Abstract
559P - Comprehensive survey of AACR GENIE database revealed a wide range of TMB distribution among all three classes (I, II, III) of BRAF mutated NSCLC
Presenter: Zhaohui Arter
Session: Poster Display
Resources:
Abstract