Abstract 5P
Background
The advent of precision medicine has significantly altered the landscape of cancer treatment, introducing a new era where therapies are customized to the individual's molecular profile. In this context, we introduce Onconaut, an AI-driven platform engineered to facilitate the selection of targeted oncology therapies for patients and caregivers.
Methods
Onconaut leverages advanced language models and machine learning techniques to evaluate patient data, aligning patients' molecular profiles with the most suitable therapies and clinical trials. The platform integrates 30M+ records from PubMed database, thousands of clinical trials, curated biomarker-treatment sets and oncology guidelines. Given a patient profile, onconaut uses multiple language models to integrate date from the sources mentioned above.
Results
The implementation of Onconaut has shown promise in simplifying the treatment selection process, enabling the identification of personalized therapy options that are closely aligned with the unique genetic makeup of a patient's cancer. This method has the potential to enhance treatment efficacy while reducing the likelihood of adverse reactions and ineffective treatments. Additionally, Onconaut serves as a conduit for patients and clinicians to stay abreast of the latest developments in biomarker research and its implications for treatment strategies. We have benchmarked Onconaut's clinical trial matching ability against available tools and we have seen 2x improvement in accuracy. In addition, we have also benchmarked guideline-based treatment selection strategy against real-life and synthetic datasets. Again, improvement of onconaut against off-the-shelf AI-tools is clearly demonstrated.
Conclusions
Onconaut stands at the forefront of precision medicine, offering a transformative tool for navigating the complexities of targeted cancer therapy. By utilizing language models and machine learning technologies, it offers tailored treatment recommendations, finds relevant clinical trials, and delivers information on biomarkers. Although, we were able to show superiority over other tools, the platform's accuracy is constanly tested against newly available methods and improved.
Editorial acknowledgement
Clinical trial identification
Legal entity responsible for the study
The author.
Funding
Helmholtz Association.
Disclosure
The author has declared no conflicts of interest.
Resources from the same session
36P - Abacavir potentiates the efficacy of doxorubicin in breast cancer cells via KDM5B Inhibition
Presenter: Anmi Jose
Session: Cocktail & Poster Display session
Resources:
Abstract
37P - Identification of immune profile in advanced cutaneous squamous cell carcinoma predicting immunotherapy response
Presenter: Alfonso Esposito
Session: Cocktail & Poster Display session
Resources:
Abstract
39P - MicroRNA as a promising molecular biomarker for liquid biopsy in breast cancer
Presenter: Giorgia Vesca
Session: Cocktail & Poster Display session
Resources:
Abstract
40P - Patient-based models to study infiltration heterogeneity in gliomas
Presenter: Ivana Manini
Session: Cocktail & Poster Display session
Resources:
Abstract
42P - HER2 aberration as a potential predictive biomarker for extrapulmonary small cell neuroendocrine carcinoma
Presenter: Jiri Dvorak
Session: Cocktail & Poster Display session
Resources:
Abstract
43P - Assessment of methylation-specific genetic markers for reliable colorectal cancer detection and their potential in liquid biopsy applications
Presenter: Jiri Dvorak
Session: Cocktail & Poster Display session
Resources:
Abstract
44P - Calculated numerical karyotype with ultra low-coverage whole genome sequencing undercovers recurrent chromosomal aberrations in resectable colorectal cancer
Presenter: Thomas Samer Tarawneh
Session: Cocktail & Poster Display session
Resources:
Abstract
46P - Promising epi(genetic) biomarkers for ovarian tumor prognosis
Presenter: Ieva Vaicekauskaitė
Session: Cocktail & Poster Display session
Resources:
Abstract
47P - Integration of miRNA profiles and p53 mutations as biomarkers for predicting sensitivity and resistance to FGFR inhibitor CPL110 in cancer therapy
Presenter: Monika Skupinska
Session: Cocktail & Poster Display session
Resources:
Abstract
48P - Early cancer detection from liquid biopsy using cell-free RNA
Presenter: Joao Curado
Session: Cocktail & Poster Display session
Resources:
Abstract