Abstract 65P
Background
This study describes a six-marker multiplex immunofluorescence (mIF) panel, along with novel marker, LRRC15. Expression in cancer is typically in the stromal compartment. However, in cancers of mesenchymal origin, LRRC15 was also found on tumour cells. Recent studies suggest roles for LRRC15 in invasion and immune modulation. This study demonstrates that mIF paired with machine learning significantly advances our ability to classify and analyse tissue samples from cancer patients.
Methods
A tissue microarray (TMA) of 174 cases of early-stage lung adenocarcinoma with 8 TMA cores from each patient was used for mIF. Tumour cells were distinguished from stromal cells with pan-cytokeratin, while markers for CD68, CD3, αSMA, vimentin, and LRRC15 were used to study immune infiltrates and the stromal compartment. Indica HALO AI image analysis platform was used to classify and analyse mIF images. Density and population of multiple cell phenotypes were then calculated. Classification models were trained and the Kruskal Wallis algorithm was used to rank importance of phenotypes. Kaplan-Meier survival curves were then plotted for highest ranked phenotypes.
Results
Several phenotypes displayed predictors of survival that outperformed previous prognostic scores. Top phenotypes from Kaplan-Meier survival analysis showed that in tumour area, high LRRC15 density predicts poorer 5-year survival in patients (HR: 1.61, 95% CI: 0.956 to 2.72, P=0.044), while high CD68 density predicts better 5-year survival (HR: 0.472, 95% CI: 0.296 to 0.753, P= 0.0006). Furthermore, high CD68 density with LRRC15 exclusion is a more powerful predictor of 5-year survival (HR: 0.444, 95% CI: 0.279 to 0.708, P= 0.0002).
Conclusions
We have demonstrated a mIF and machine learning pipeline that could enhance the performance of survival predictors. Furthermore, understanding LRRC15 in the TME could contribute to precision medicine in lung cancer.
Editorial acknowledgement
Clinical trial identification
Legal entity responsible for the study
University of St Andrews.
Funding
Melville Trust.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
35P - Whole exome sequencing reveals high frequency of Notch pathway mutations in Indian breast cancer cases
Presenter: Harsh Goel
Session: Cocktail & Poster Display session
Resources:
Abstract
36P - Abacavir potentiates the efficacy of doxorubicin in breast cancer cells via KDM5B Inhibition
Presenter: Anmi Jose
Session: Cocktail & Poster Display session
Resources:
Abstract
37P - Identification of immune profile in advanced cutaneous squamous cell carcinoma predicting immunotherapy response
Presenter: Alfonso Esposito
Session: Cocktail & Poster Display session
Resources:
Abstract
39P - MicroRNA as a promising molecular biomarker for liquid biopsy in breast cancer
Presenter: Giorgia Vesca
Session: Cocktail & Poster Display session
Resources:
Abstract
40P - Patient-based models to study infiltration heterogeneity in gliomas
Presenter: Ivana Manini
Session: Cocktail & Poster Display session
Resources:
Abstract
42P - HER2 aberration as a potential predictive biomarker for extrapulmonary small cell neuroendocrine carcinoma
Presenter: Jiri Dvorak
Session: Cocktail & Poster Display session
Resources:
Abstract
43P - Assessment of methylation-specific genetic markers for reliable colorectal cancer detection and their potential in liquid biopsy applications
Presenter: Jiri Dvorak
Session: Cocktail & Poster Display session
Resources:
Abstract
44P - Calculated numerical karyotype with ultra low-coverage whole genome sequencing undercovers recurrent chromosomal aberrations in resectable colorectal cancer
Presenter: Thomas Samer Tarawneh
Session: Cocktail & Poster Display session
Resources:
Abstract
46P - Promising epi(genetic) biomarkers for ovarian tumor prognosis
Presenter: Ieva Vaicekauskaitė
Session: Cocktail & Poster Display session
Resources:
Abstract
47P - Integration of miRNA profiles and p53 mutations as biomarkers for predicting sensitivity and resistance to FGFR inhibitor CPL110 in cancer therapy
Presenter: Monika Skupinska
Session: Cocktail & Poster Display session
Resources:
Abstract