Abstract 82P
Background
Neutrophil extracellular traps (NETs) are involved in the progression and metastasis of a variety of malignancies. Our previous studies have confirmed that tumor cell-released autophagosomes (TRAPs) induced immunosuppression TME formation. However, it remains to be investigated whether TRAPs-treated neutrophils contribute to the metastatic colonization of the lungs by tumor cells.To explore TRAPs induced neutrophils to form NETs and its regulatory mechanism of tumor metastasis, providing possible targets for disease treatment.
Methods
NETs were observed by scanning electron microscopy (SEM) and Confocal Microscope. Western blot and ELISA were used to quantify MPO-DNA, NE, and cit-H3 which are important components of NETs. In vivo, TRAPs were injected into the tail vein of mice and Beclin1 knockdown 4T1 tumor cells engineering to reduce TRAPs release were injected into mice subcutaneously. The characteristic molecules of NETs in plasma were detected. The study used antibody blocking assays to identify key DAMPs on the surface of TRAPs. Flow cytometry was used to evaluate T cell and lung infiltrating T cell function, as well as to monitor late lung metastases in neutrophils treated with TRAPs suppressor.
Results
Numerous reticular structures significantly increased in the cell culture supernatant after TRAPs treatment. In vivo, NETs were significantly increased in plasma after tail vein injection of TRAPs as well as in 4T1 tumor-bearing mice. Conversely, NETs were significantly decreased in the plasma of Beclin1 knockdown 4T1 tumor-bearing mice. TRAPs derived from breast tumor cell lines induced neutrophil formation of NETs via the HMGB1-TLR4-MyD88-ERK/p38 pathway. This process inhibited the proliferation and secretion of IFN-γ in CD4+ and CD8+ T cells, ultimately leading to increased lung metastasis.
Conclusions
TRAPs promote breast cancer lung metastasis by modulating neutrophil extracellular traps formation. Overall, these findings define a novel mechanism mediated by TRAPs in neutrophils, which may suppress anti-tumor T cell immunity and highlight TRAPs as an important target for future tumor immunotherapy.
Editorial acknowledgement
Clinical trial identification
Legal entity responsible for the study
Chengdong Wu, Xuru Wang.
Funding
The National Natural Science Foundation of China.
Disclosure
The author has declared no conflicts of interest.
Resources from the same session
20P - Effects of <italic>Apis dorsata</italic> honey on the expression of selected CYP450, pro-apoptotic, and anti-apoptotic genes during induced cytotoxicity in cyclophosphamide-treated human lung carcinoma (A549) cells
Presenter: Jose Kenneth Narag
Session: Cocktail & Poster Display session
Resources:
Abstract
21P - Hsa_circ_0009061 inhibits the progression of bladder cancer through the miR-889-3p/CPEB3 axis
Presenter: Minkang Wu
Session: Cocktail & Poster Display session
Resources:
Abstract
22P - Exploring exportin-1 as a therapeutic vulnerability in lung squamous cell carcinoma
Presenter: Vidushi Durani
Session: Cocktail & Poster Display session
Resources:
Abstract
23P - Identification of HPSE as potential novel therapeutic target for lung adenocarcinoma patients
Presenter: Samuel Doré
Session: Cocktail & Poster Display session
Resources:
Abstract
24P - High-throughput plasma proteomics profiling in early breast cancer
Presenter: Isabella Lombardo
Session: Cocktail & Poster Display session
Resources:
Abstract
25P - Immunohistochemical analysis of ROR1 and BMI-1 expression in luminal breast cancer
Presenter: Sergey Vtorushin
Session: Cocktail & Poster Display session
Resources:
Abstract
26P - Associations between cancer stem cells (CSC) markers and androgen (AR) and estrogen (ER) receptors expression in prostate cancer (PCa)
Presenter: Marina Puchinskaya
Session: Cocktail & Poster Display session
Resources:
Abstract
27P - Proteomic profiling reveals organ-specific differences in metastases and identifies potential biomarkers for recurrence risk in localized colon cancer
Presenter: Blanca García-Micó
Session: Cocktail & Poster Display session
Resources:
Abstract
28P - Collagen-activated signalling pathway is significantly hypermethylated in high-grade serous ovarian cancer (HGSOC) patients treated with platinum-containing neoadjuvant chemotherapy (NACT)
Presenter: Jose Alejandro Perez Fidalgo
Session: Cocktail & Poster Display session
Resources:
Abstract
29P - Quantitative tissue analysis reveal adenylate kinase 2 protein signatures: Therapeutic target for meningioma
Presenter: Rashmi Rana
Session: Cocktail & Poster Display session
Resources:
Abstract