Abstract 82P
Background
Neutrophil extracellular traps (NETs) are involved in the progression and metastasis of a variety of malignancies. Our previous studies have confirmed that tumor cell-released autophagosomes (TRAPs) induced immunosuppression TME formation. However, it remains to be investigated whether TRAPs-treated neutrophils contribute to the metastatic colonization of the lungs by tumor cells.To explore TRAPs induced neutrophils to form NETs and its regulatory mechanism of tumor metastasis, providing possible targets for disease treatment.
Methods
NETs were observed by scanning electron microscopy (SEM) and Confocal Microscope. Western blot and ELISA were used to quantify MPO-DNA, NE, and cit-H3 which are important components of NETs. In vivo, TRAPs were injected into the tail vein of mice and Beclin1 knockdown 4T1 tumor cells engineering to reduce TRAPs release were injected into mice subcutaneously. The characteristic molecules of NETs in plasma were detected. The study used antibody blocking assays to identify key DAMPs on the surface of TRAPs. Flow cytometry was used to evaluate T cell and lung infiltrating T cell function, as well as to monitor late lung metastases in neutrophils treated with TRAPs suppressor.
Results
Numerous reticular structures significantly increased in the cell culture supernatant after TRAPs treatment. In vivo, NETs were significantly increased in plasma after tail vein injection of TRAPs as well as in 4T1 tumor-bearing mice. Conversely, NETs were significantly decreased in the plasma of Beclin1 knockdown 4T1 tumor-bearing mice. TRAPs derived from breast tumor cell lines induced neutrophil formation of NETs via the HMGB1-TLR4-MyD88-ERK/p38 pathway. This process inhibited the proliferation and secretion of IFN-γ in CD4+ and CD8+ T cells, ultimately leading to increased lung metastasis.
Conclusions
TRAPs promote breast cancer lung metastasis by modulating neutrophil extracellular traps formation. Overall, these findings define a novel mechanism mediated by TRAPs in neutrophils, which may suppress anti-tumor T cell immunity and highlight TRAPs as an important target for future tumor immunotherapy.
Editorial acknowledgement
Clinical trial identification
Legal entity responsible for the study
Chengdong Wu, Xuru Wang.
Funding
The National Natural Science Foundation of China.
Disclosure
The author has declared no conflicts of interest.
Resources from the same session
62P - Role of IL6 (C-174G) polymorphism in the development of cervical intraepithelial neoplasia
Presenter: Tatyana Abakumova
Session: Cocktail & Poster Display session
Resources:
Abstract
63P - The impact of disruption of melatonin secretion on the structural-functional changes of the microbiome and the role of the melatonin-microbiome axis in the initiation of carcinogenesis
Presenter: Alexandre Tavartkiladze
Session: Cocktail & Poster Display session
Resources:
Abstract
64P - Acidosis induces ferroptosis of breast cancer via ZFAND5/SLC3A2 axis with the synergistic effect of metformin and facilitates M1 macrophage polarization
Presenter: Hanchu Xiong
Session: Cocktail & Poster Display session
Resources:
Abstract
65P - Transmembrane distribution of phosphatidylethanolamine in plasma membrane of ovarian cancer cells under conditions mimicking tumor microenvironment
Presenter: Darya Savenkova
Session: Cocktail & Poster Display session
Resources:
Abstract
66P - Metabolic regulation of GMP- and MDP-derived macrophages in glioblastoma
Presenter: Liam Wilson
Session: Cocktail & Poster Display session
Resources:
Abstract
67P - Inflammation status and sarcopenia synergistically impact outcomes in cancer patients (pt) treated with ImmunOtherapy (IO) within the framework of a Molecular Pre-screening program (MP) and a spEcial Medication (ME) program
Presenter: Lucia Notario Rincon
Session: Cocktail & Poster Display session
Resources:
Abstract
68P - The role of systemic reprogramming of GMPs in improving outcomes in glioblastoma
Presenter: Aline Atallah
Session: Cocktail & Poster Display session
Resources:
Abstract
69P - Integrated OMIC analysis reveals arginine and proline metabolism plays critical role in hypoxia-induced oral squamous cell carcinoma
Presenter: Avinash Singh
Session: Cocktail & Poster Display session
Resources:
Abstract
70P - Individualising methotrexate dose based on MTHFR gene polymorphisms in acute lymphoblastic leukemia
Presenter: Meher Konatam
Session: Cocktail & Poster Display session
Resources:
Abstract
71P - Single nucleotide polymorphisms in the folate metabolic pathway genes and global DNA methylation in ovarian cancer
Presenter: Sandro Surmava
Session: Cocktail & Poster Display session
Resources:
Abstract