Abstract 64P
Background
KRAS is a frequent oncogene in human cancer and is an interesting therapeutic target due to its critical function in many malignancies. Although RAS was previously considered undruggable, recent successful identification of covalent inhibitors has shed light on the potential for cancer treatment. In drug research, RAS enzymatic activity is often measured, but methods based on RAS thermal stability (TSA) are also found useful. In these assays, RAS binding ligands stabilizes the structure over the native conformation and shifts its denaturation temperature. Among TSAs, differential scanning fluorimetry (DSF) has gained the most attention due to method’s good throughput. However, DSF lacks the needed sensitivity and results are markedly TSA dye-dependent. In addition, ligand behavior might vary when measured over the physiological temperature. In some cases, binding affinities obtained using isothermal chemical denaturation (ICD) have been found more reliable. Commonly used chemical denaturants like urea and guanidium chloride can be used to provide reliable information on ligand binding in a concentration dependent manner. However, these denaturants often require long incubation time and may affect the affinity of ionic compounds at high concentrations.
Methods
To overcome the difficulties in TSA and ICD techniques, we have developed a modification of the Protein-Probe (PP) technique, to measure isothermal protein stability at mild ICD conditions over time. The principle of this method is based on designed dual-labeled peptide-probe, and time-resolved Förster resonance energy transfer (TR-FRET) monitoring.
Results
As a model KRAS mutation, we studied KRAS(G12C) (50 nM) interaction with the most promising covalent inhibitors. Inhibitor induced stabilization of KRAS(G12C) can be monitored directly from the signals in a dose dependent manner in less than 60 min. The same effect was not seen with G12V.
Conclusions
ICD combined with the novel FRET-probe is a prominent option for TSAs, as no special equipment are needed. Isothermal concept can also potentially provide more understanding of how these proteins behave in vivo.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Academy of Finland and Otto A. Malm Foundation.
Disclosure
H. Härmä, K. Kopra: Financial Interests, Personal, Ownership Interest: QRET Technologies Oy. All other authors have declared no conflicts of interest.
Resources from the same session
52P - Antitumor efficacy of polypyrrole-polyethyleneimine nanocomplex to target B-cell lymphoma
Presenter: Thi Thuy Nguyen
Session: Cocktail & Poster Display session
Resources:
Abstract
53P - Characterization of the non-ATP competitive PI3Kdelta inhibitor IOA-244 in lymphoma models: From single agent to combination screen and clinical investigation
Presenter: Francesco Bertoni
Session: Cocktail & Poster Display session
Resources:
Abstract
54P - Inhibition of ATM vs ATR in combination with radiotherapy affects cellular toxicity and expression of immune checkpoint molecules differently in HNSCC
Presenter: Tina Jost
Session: Cocktail & Poster Display session
Resources:
Abstract
55P - The SOS inhibitor BAY293 contributes to amplified vertical inhibition of the MAP kinase pathway in human melanoma cells
Presenter: Martin Hohenegger
Session: Cocktail & Poster Display session
Resources:
Abstract
56P - Inhibition of HIF-2α-dependent transcription with small molecule inhibitors may provide therapeutic benefit beyond renal cell carcinoma
Presenter: Kelsey Gauthier
Session: Cocktail & Poster Display session
Resources:
Abstract
57P - Deciphering the role of E2F transcription factor-1 in glutamine metabolism
Presenter: Katharina Huber
Session: Cocktail & Poster Display session
Resources:
Abstract
58P - Neratinib could be effective as monotherapy or in combination with trastuzumab in HER2-low-expressing breast cancer cells and organoid mode
Presenter: Maryam Arshad
Session: Cocktail & Poster Display session
Resources:
Abstract
59P - The influence of the ABCB1, ABCG2 and OATP1 transporters and the CYP3A enzyme on the bioavailability and tissue distribution of TPX-0131
Presenter: Jamie Rijmers
Session: Cocktail & Poster Display session
Resources:
Abstract
60P - MAPKAP1/SIN1: A promising therapeutic target in resistant BRAF-mutated melanoma
Presenter: Emilien Ezine
Session: Cocktail & Poster Display session
Resources:
Abstract
61P - The cysteine-rich protein 61 (Cyr61) contributes to tumor proliferation and invasion via HGF-mediated NF-kB signaling pathway in human hepatocellular carcinoma
Presenter: Jiyoon Jung
Session: Cocktail & Poster Display session
Resources:
Abstract