Abstract 64P
Background
KRAS is a frequent oncogene in human cancer and is an interesting therapeutic target due to its critical function in many malignancies. Although RAS was previously considered undruggable, recent successful identification of covalent inhibitors has shed light on the potential for cancer treatment. In drug research, RAS enzymatic activity is often measured, but methods based on RAS thermal stability (TSA) are also found useful. In these assays, RAS binding ligands stabilizes the structure over the native conformation and shifts its denaturation temperature. Among TSAs, differential scanning fluorimetry (DSF) has gained the most attention due to method’s good throughput. However, DSF lacks the needed sensitivity and results are markedly TSA dye-dependent. In addition, ligand behavior might vary when measured over the physiological temperature. In some cases, binding affinities obtained using isothermal chemical denaturation (ICD) have been found more reliable. Commonly used chemical denaturants like urea and guanidium chloride can be used to provide reliable information on ligand binding in a concentration dependent manner. However, these denaturants often require long incubation time and may affect the affinity of ionic compounds at high concentrations.
Methods
To overcome the difficulties in TSA and ICD techniques, we have developed a modification of the Protein-Probe (PP) technique, to measure isothermal protein stability at mild ICD conditions over time. The principle of this method is based on designed dual-labeled peptide-probe, and time-resolved Förster resonance energy transfer (TR-FRET) monitoring.
Results
As a model KRAS mutation, we studied KRAS(G12C) (50 nM) interaction with the most promising covalent inhibitors. Inhibitor induced stabilization of KRAS(G12C) can be monitored directly from the signals in a dose dependent manner in less than 60 min. The same effect was not seen with G12V.
Conclusions
ICD combined with the novel FRET-probe is a prominent option for TSAs, as no special equipment are needed. Isothermal concept can also potentially provide more understanding of how these proteins behave in vivo.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Academy of Finland and Otto A. Malm Foundation.
Disclosure
H. Härmä, K. Kopra: Financial Interests, Personal, Ownership Interest: QRET Technologies Oy. All other authors have declared no conflicts of interest.
Resources from the same session
97P - Bcl-xL prevents the arginine starvation induced by PEGylated arginine deiminase (ADI-PEG20) from inducing apoptosis
Presenter: Brian Van Tine
Session: Cocktail & Poster Display session
Resources:
Abstract
98P - Cationic dendrimers as prospective vehicles of therapeutic nucleic acids into tumor cells: Approaches, advantages and challenges
Presenter: Nadezhda Knauer
Session: Cocktail & Poster Display session
Resources:
Abstract
99P - Quantitative indicators of TREC and KREC excision rings in malignant neoplasms
Presenter: Alexander Sultanbaev
Session: Cocktail & Poster Display session
Resources:
Abstract
100P - RS-0139, a novel tumor-targeted delivery of docetaxel, with potent anti-tumor activity in a broad spectrum of tumor cell lines and xenograft models
Presenter: Gulsah Nomak
Session: Cocktail & Poster Display session
Resources:
Abstract
101P - Prediction of radiation responses in patients with locally advanced rectal cancer with a patient-derived organoid-based radiosensitivity model
Presenter: Samart Phuwapraisirisan
Session: Cocktail & Poster Display session
Resources:
Abstract
102P - Co-expression analysis of genes encoding proteasome subunits and XPO1-related proteins in the Cancer Genome Atlas (TCGA) and the Gene Tissue Expression (GTEx) databases as a tool to devise new treatment strategies
Presenter: Vito Spataro
Session: Cocktail & Poster Display session
Resources:
Abstract
103P - Microsomal triglyceride transfer protein as a prognostic and therapeutic marker for brain cancer
Presenter: Ryuk Jun Kwon
Session: Cocktail & Poster Display session
Resources:
Abstract
104P - Choline transporter-like protein 1 is a novel molecular target for the treatment of hepatocellular carcinoma
Presenter: Masato Inazu
Session: Cocktail & Poster Display session
Resources:
Abstract
106P - Knockout of lncRNA-CCAT1 with the use of CRISPR-Cas9 system and G7 PAMAM dendrimers influences apoptosis and proliferations of NSCLC cells
Presenter: Mateusz Iwanski
Session: Cocktail & Poster Display session
Resources:
Abstract
107P - Censoring imbalance in ACIS trial for prostate cancer
Presenter: Noa Zimhony-Nissim
Session: Cocktail & Poster Display session
Resources:
Abstract