Abstract 230P
Background
Our prior research demonstrated that the presence of detectable plasma levels of acetaminophen (APAP) at the initiation of treatment was associated to a poor clinical outcome in cancer patients receiving immune checkpoint inhibitors (ICIs), independent of other known prognostic factors (Bessede et al. Ann Oncol 2022). This observation raised concerns about the potential immunomodulatory effects of APAP. Consequently, we aimed to elucidate the mechanistic basis of APAP’s immunosuppressive action.
Methods
We established an in vitro model using peripheral blood mononuclear cells (PBMCs) activated with anti-CD3 in the presence of APAP. Cellular responses were assessed at 3 and 6 days post-treatment using live-cell imaging and immunophenotyping via flow cytometry. Cytokine production was quantified through Homogeneous Time-Resolved Fluorescence assays, and key analytes were measured using ELISA.
Results
Our findings revealed that APAP significantly reduced the production of interferon-gamma (IFNγ) and suppressed PBMC proliferation in a dose-dependent manner, independent of cell death pathways. Notably, serotonin and kynurenine pathways did not appear to contribute to the impaired IFNγ response. In the presence of APAP, a distinct subset of CD4+ T cells emerged, characterized by low IFNγ production and expression of exhaustion markers such as Tim-3 and LAG-3, although PD-1 expression remained low. These results suggest that APAP selectively affects a subpopulation of immune cells, driving their exhaustion. Additionally, we identified tramadol and nefopam as viable alternatives to APAP, as neither PBMC cluster formation nor IFNγ production were impaired in our model.
Conclusions
APAP exerts a potent immunosuppressive effect on PBMC activation, promoting the expansion of an exhausted CD4+ T cell subset. Ongoing investigations using single-cell RNA sequencing will provide deeper insights into the phenotypic and functional characteristics of these cells. These findings may have critical implications for the use of APAP in cancer patients undergoing immunotherapy and highlight the potential of alternative analgesics with limited immunomodulatory activity.
Legal entity responsible for the study
The authors.
Funding
Fondation ARC pour la recherche sur le cancer.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
204P - Deciphering the crosstalk between tumor and circulating immune microenvironment in advanced NSCLC patients undergoing immunotherapy
Presenter: Prisca Tamarozzi
Session: Poster Display session
205P - Advancing pre-clinical functional tests with immune-responsive Precision Cut Bladder Tumor Slices (PCTS)
Presenter: Sarah Richtmann
Session: Poster Display session
206P - Characterisation of tumour-infiltrating lymphocytes (TILs) in liver metastases (LM) and primary tumour (PT) of microsatellite stable (MSS) colorectal cancers
Presenter: Yi Hua Low
Session: Poster Display session
207P - ZEB2 inhibition relieves TAMs-mediated immunosuppression in EGFR-TKI resistant NSCLC
Presenter: Yunhuan Liu
Session: Poster Display session
Resources:
Abstract
208P - Targeting pro-tumor TAMs to improve immune checkpoint response of advanced bladder cancer
Presenter: Marine Leblond
Session: Poster Display session
209P - Mapping the landscape of immune cells for optimal index calculation using AI-powered image analysis of multiplexed immunohistochemistry in breast cancer patients
Presenter: Patricia Nielsen
Session: Poster Display session
210P - Precision immuno-oncology strategies to overcome drug resistance in non-small cell lung cancer
Presenter: Heidi Haikala
Session: Poster Display session
211P - Single-cell characterization of differentiation trajectories and drug resistance features in gastric cancer with peritoneal metastasis
Presenter: Haoxin Peng
Session: Poster Display session
Resources:
Abstract
212P - YAP/TEAD4/SP1-induced VISTA expression as a tumor cell-intrinsic mechanism of immunosuppression in colorectal cancer
Presenter: Zhehui Zhu
Session: Poster Display session
Resources:
Abstract
214P - DNA-damaging therapies trigger transcriptome and metabolism changes in peripheral NK cells of SCLC patients
Presenter: Caterina de Rosa
Session: Poster Display session