Abstract 230P
Background
Our prior research demonstrated that the presence of detectable plasma levels of acetaminophen (APAP) at the initiation of treatment was associated to a poor clinical outcome in cancer patients receiving immune checkpoint inhibitors (ICIs), independent of other known prognostic factors (Bessede et al. Ann Oncol 2022). This observation raised concerns about the potential immunomodulatory effects of APAP. Consequently, we aimed to elucidate the mechanistic basis of APAP’s immunosuppressive action.
Methods
We established an in vitro model using peripheral blood mononuclear cells (PBMCs) activated with anti-CD3 in the presence of APAP. Cellular responses were assessed at 3 and 6 days post-treatment using live-cell imaging and immunophenotyping via flow cytometry. Cytokine production was quantified through Homogeneous Time-Resolved Fluorescence assays, and key analytes were measured using ELISA.
Results
Our findings revealed that APAP significantly reduced the production of interferon-gamma (IFNγ) and suppressed PBMC proliferation in a dose-dependent manner, independent of cell death pathways. Notably, serotonin and kynurenine pathways did not appear to contribute to the impaired IFNγ response. In the presence of APAP, a distinct subset of CD4+ T cells emerged, characterized by low IFNγ production and expression of exhaustion markers such as Tim-3 and LAG-3, although PD-1 expression remained low. These results suggest that APAP selectively affects a subpopulation of immune cells, driving their exhaustion. Additionally, we identified tramadol and nefopam as viable alternatives to APAP, as neither PBMC cluster formation nor IFNγ production were impaired in our model.
Conclusions
APAP exerts a potent immunosuppressive effect on PBMC activation, promoting the expansion of an exhausted CD4+ T cell subset. Ongoing investigations using single-cell RNA sequencing will provide deeper insights into the phenotypic and functional characteristics of these cells. These findings may have critical implications for the use of APAP in cancer patients undergoing immunotherapy and highlight the potential of alternative analgesics with limited immunomodulatory activity.
Legal entity responsible for the study
The authors.
Funding
Fondation ARC pour la recherche sur le cancer.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
194P - The impact of BTK inhibitors on ?d T cell fitness: Lesson for immunotherapy
Presenter: Adam Michalski
Session: Poster Display session
195P - Anti-CTLA4 therapy leads to early expansion of peripheral Th17 population and induction of Th1 cytokines
Presenter: Mari Nakazawa
Session: Poster Display session
196P - Single-cell analysis of stage-I high-grade serous ovarian carcinoma reveals the essential role of regulatory T cells in early tumor establishment
Presenter: Joanna Mikulak
Session: Poster Display session
197P - Comprehensive immunoprofiling of the intratumoral and peripheral T cell receptor gene repertoire in triple-negative breast cancer patients
Presenter: Antonios Mingos
Session: Poster Display session
198P - Association of types of treatment modalities with expression of T Lymphocytes (CD4, CD8, Treg) in breast cancer patients and their clinical outcome
Presenter: Arshi Rizwan
Session: Poster Display session
Resources:
Abstract
199P - Cancer neutrophil encyclopedia: A deep dive into antigen-presenting warriors
Presenter: Yingcheng Wu
Session: Poster Display session
Resources:
Abstract
200P - CXCR1+ neutrophil infiltration orchestrates response to third-generation EGFR-TKI in EGFR mutant NSCLC
Presenter: Haowei Wang
Session: Poster Display session
Resources:
Abstract
201P - Underlying mechanisms of neutrophil-mediated immunosuppression and resistance to treatment in breast cancer: Further evidence that these cells matter
Presenter: Bruna Filipa Correia
Session: Poster Display session
202P - Mining tumor infiltrating B cells to discover antibody-target pairs and develop novel therapies
Presenter: Matthieu Delince
Session: Poster Display session
203P - Targeting IL-33 reprograms tumor microenvironment and potentiates antitumor response to anti-PD-L1 immunotherapy
Presenter: Xuyao Zhang
Session: Poster Display session