Abstract 174P
Background
Colorectal cancer (CRC) is the second leading cause of cancer deaths, and liver metastasis accounts for most fatalities in CRC patients. Developing more effective treatments for patients with metastatic CRC is an urgent unmet need. Sphingosine kinase 1 (SPHK1) is selectively expressed in tumor-associated macrophages (TAMs) and SPHK1+ TAMs are abundant in metastatic tumor microenvironment. Here, we aimed to reveal the role of SPHK1+ TAMs in regulating immunosuppression and develop novel therapeutic strategies to enhance the efficacy of immune checkpoint blockade (ICB) therapy and mitigate ICB-induced toxicity.
Methods
The expression of SPHK1 in TAMs was determined using laser scanning microscopy and single-cell sequencing databases. The inhibitory effect of SPHK1 blockade alone or combined with ICB on liver metastasis was assessed using an orthotopic mouse model or intrasplenic injection of tumor cells. Flow cytometry and mass cytometry were used to analyze the immune microenvironment in SPHK1-/- knockout mice. The effect of SPHK1 inhibitor PF543 on the ICB-induced toxicity was verified by DSS-induced colitis or humanized mouse model in a combination of ICB. RNA sequencing and western blot were used to further explore the molecular mechanism by which SPHK1 promoted inflammasome activation and IL-1β release.
Results
SPHK1 was selectively expressed by TAMs in CRC, and the abundance of SPHK1+ TAMs was associated with adverse clinical outcomes in CRC patients. In vivo, SPHK1 knockout and inhibition suppressed liver metastasis of CRC and enhanced the anti-tumor activity of ICB. Blocking SPHK1 reduced the infiltration of TAMs and exhausted T cells, and promoted cytotoxicity of CD8+ T cells. Mechanistically, SPHK1/S1P axis led to IL-1β secretion in response to AIM2 and NLRP3 inflammasome activation. SPHK1 inhibitor PF543 and anti-IL-1R alleviated ICB-induced toxicity, including colitis and liver damage. PF543 plus anti-PD-1 therapy could induce complete regression of liver metastasis and mitigate liver dysfunction when further combined with radiotherapy.
Conclusions
Targeting SPHK1 in macrophages could inhibit liver metastasis of CRC and decouple ICB anti-tumor immunity and toxicity.
Legal entity responsible for the study
The authors.
Funding
National Natural Science Foundation of China (No.82103595).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
26P - Liquid biopsy as promising source of plasma extracellular vesicle biomarkers of response to Cabozantinib (CABO) plus Durvalumab (DURVA) in advanced urothelial carcinoma (UC) or non-UC variant histologies (VH) patients (the Phase 2 ARCADIA trial)
Presenter: Veronica Huber
Session: Poster Display
27P - Peripheral biomarker analysis in patients with advanced urothelial carcinoma (UC) after platinum chemotherapy treated with Cabozantinib (CABO) plus Durvalumab (DURVA): preliminary analysis from the Phase 2 ARCADIA trial.
Presenter: Francesco Sgambelluri
Session: Poster Display
28P - 3-year follow-up analysis of disease-free survival in CheckMate 274 by PD-L1 expression using tumor cell and combined positive scoring algorithms
Presenter: Frank Stenner-Liewen
Session: Poster Display
30P - CD4+ T cells within the tumor microenvironment are an independent predictor of recurrence, but do not improve the performance of a predictive model in oral squamous cell carcinoma
Presenter: Sangeeta Bisheshar
Session: Poster Display
31P - Characterization of pre-exhausted / exhausted state of CD8+ T cells in HRAS mutant head and neck carcinomas (HNSCCs). Implications for response to immune checkpoint blockade (ICB).
Presenter: Ioannis Kotsantis
Session: Poster Display
32P - Tumor-agnostic plasma assay for circulating tumor DNA predicts outcome in recurrent and/or metastatic squamous cell carcinoma of the head and neck treated with a PD-1 inhibitor
Presenter: Natasha Honoré
Session: Poster Display
34P - Heterogeneous response to Immune Checkpoint Inhibitors in metastatic melanoma patients - assessment of lesion-level response with 18F-FDG PET/CT
Presenter: Katja Strasek
Session: Poster Display