Abstract 174P
Background
Colorectal cancer (CRC) is the second leading cause of cancer deaths, and liver metastasis accounts for most fatalities in CRC patients. Developing more effective treatments for patients with metastatic CRC is an urgent unmet need. Sphingosine kinase 1 (SPHK1) is selectively expressed in tumor-associated macrophages (TAMs) and SPHK1+ TAMs are abundant in metastatic tumor microenvironment. Here, we aimed to reveal the role of SPHK1+ TAMs in regulating immunosuppression and develop novel therapeutic strategies to enhance the efficacy of immune checkpoint blockade (ICB) therapy and mitigate ICB-induced toxicity.
Methods
The expression of SPHK1 in TAMs was determined using laser scanning microscopy and single-cell sequencing databases. The inhibitory effect of SPHK1 blockade alone or combined with ICB on liver metastasis was assessed using an orthotopic mouse model or intrasplenic injection of tumor cells. Flow cytometry and mass cytometry were used to analyze the immune microenvironment in SPHK1-/- knockout mice. The effect of SPHK1 inhibitor PF543 on the ICB-induced toxicity was verified by DSS-induced colitis or humanized mouse model in a combination of ICB. RNA sequencing and western blot were used to further explore the molecular mechanism by which SPHK1 promoted inflammasome activation and IL-1β release.
Results
SPHK1 was selectively expressed by TAMs in CRC, and the abundance of SPHK1+ TAMs was associated with adverse clinical outcomes in CRC patients. In vivo, SPHK1 knockout and inhibition suppressed liver metastasis of CRC and enhanced the anti-tumor activity of ICB. Blocking SPHK1 reduced the infiltration of TAMs and exhausted T cells, and promoted cytotoxicity of CD8+ T cells. Mechanistically, SPHK1/S1P axis led to IL-1β secretion in response to AIM2 and NLRP3 inflammasome activation. SPHK1 inhibitor PF543 and anti-IL-1R alleviated ICB-induced toxicity, including colitis and liver damage. PF543 plus anti-PD-1 therapy could induce complete regression of liver metastasis and mitigate liver dysfunction when further combined with radiotherapy.
Conclusions
Targeting SPHK1 in macrophages could inhibit liver metastasis of CRC and decouple ICB anti-tumor immunity and toxicity.
Legal entity responsible for the study
The authors.
Funding
National Natural Science Foundation of China (No.82103595).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
60P - Adaptive NK cells as a therapeutic option for childhood leukaemia
Presenter: Zoya Eskandarian
Session: Poster Display
61P - Unlocking the Power of Natural Killer Cells: Precision Selection with Cutting-Edge Microfluidics
Presenter: Neelima KC
Session: Poster Display
63TiP - A phase I study of tumor-infiltrating lymphocytes (TILs) in advanced solid tumors used an optimized regimen: MIZAR trial
Presenter: Qing Xu
Session: Poster Display
68P - Real-world (rw) outcomes in patients (pts) with metastatic (m) NSCLC and STK11, KEAP1 and/or KRAS mutations (mut) receiving PD-(L)1-based treatment (tx): CORRELATE
Presenter: Solange Peters
Session: Poster Display
70P - LIST (Lung Initiative on Sequence Therapy), a real-world study of nivolumab for advanced NSCLC in France: first effectiveness, safety, and IO-rechallenge results
Presenter: Benoît GODBERT
Session: Poster Display
72P - Camrelizumab plus apatinib after chemoradiotherapy in unresectable stage III non-small-cell lung cancer?A multi-center, single-arm, phase 2 study
Presenter: Hui Zhouguang
Session: Poster Display
74P - A single-center, Phase II study of surufatinib combined with toripalimab, pemetrexed(A), and platinum (P) in patients with advanced non-squamous non-small cell lung cancer (nsq-NSCLC)
Presenter: Wen Feng Fang
Session: Poster Display
75P - Patient-reported outcomes (PROs) of cemiplimab + chemotherapy in advanced non-small cell lung cancer (NSCLC): EMPOWER-lung 3 liver metastases subpopulation
Presenter: Ana Baramidze
Session: Poster Display