Abstract 191P
Background
Glioblastoma (GBM), isocitrate dehydrogenase wild-type (IDH-WT), is the most aggressive and invasive form of glioma in adults. This primary brain tumor remains refractory to standard protocols, resulting in a very limited patient survival. GBM is a cold tumor, characterized by a low infiltrative lymphocyte pool and the enhanced expression of immunosuppressive molecules which may explain the failure of immunotherapy. We recently showed that partial removal of malignant senescent cells improved the survival of GBM-bearing mice and remodels the tumor microenvironment (TME) towards a less anti-inflammatory phenotype. Further, we observed an upregulation of genes associated with interferon alpha and gamma, pathways which play key roles in immunity activation and anti-tumor response1.
Methods
To better understand how senescent cells shape the TME and to test whether senolytic drug therapy may be a beneficial adjuvant therapy for patients with GBM, we applied a genetic senolytic (p16-3MR + GCV) to an immunocompetent mesenchymal GBM mouse model in combination or not with immune checkpoint inhibitors (ICI). We analyzed the TME using transcriptomic approaches (bulk RNA sequencing) and the overall survival of mice bearing GBM after treatments.
Results
First, we observed that malignant cells were enriched in genes associated with the antigen-presenting machinery in GBM depleted for senescent cells (p16-3MR+GCV, n=9) compared with controls (WT+GCV, n=5). Second, we found that a combination of senolytic and a cocktail of ICI significantly increases the overall survival of mice bearing GBM compared with mice treated with senolytic and control isotypes.
Conclusions
All together our findings suggest a remodeling of the GBM microenvironment upon senescent cells’ removal, facilitating response to ICI. Further work is needed to understand underlying mechanisms of ICI response in a GBM-context and identify the immune cell types responsible for this survival benefit. 1 Salam, Saliou et al. Cellular senescence in malignant cells promotes tumor progression in mouse and patient Glioblastoma. Nat. Commun. 14, 1–21 (2023).
Legal entity responsible for the study
The authors.
Funding
Ligue contre le Cancer, Fondation ARC, Siric Curamus.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
136P - Circadian rhythm positioned chronomodulated-SBRT with Cancer associated fibroblast elimination theranostic treatment to harmonize resistant TFG-Beta stromal microenvironment in conjunction with PDL-1 based immunotherapy in disseminated cancers-Concept randomised study.
Presenter: G Lohith
Session: Poster Display
137P - First-in-human results from a Phase I dose-escalation study of VSV-GP (BI 1831169) in patients with advanced solid tumors
Presenter: Stephane Champiat
Session: Poster Display
138P - Generation of frameshift mutated TGF_R2-specific T cells in healthy subjects following administration with cancer vaccine candidate FMPV-1/GM-CSF
Presenter: Else Inderberg
Session: Poster Display
139P - Safety and clinical activity of a novel anti-CCR8 antibody (LM-108) as a single agent or in combination with pembrolizumab in patients with advanced solid tumors: Results of phase 1 study
Presenter: Alexander Starodub
Session: Poster Display
140P - Eliciting mAbs targeting MHC-bound peptides with a novel antibody discovery platform
Presenter: Elli Sandberg
Session: Poster Display
141P - An IgE antibody targeting the melanoma-associated Chondroitin Sulfate Proteoglycan 4
Presenter: Lais Cristina Palhares
Session: Poster Display
142P - Identifying novel immunotherapy targets using machine learning and ex vivo validation
Presenter: Marcellus Augustine
Session: Poster Display
143P - Advancing Cancer Immunotherapy via HLA-G Pathway Modulation with UCB4594
Presenter: Ann WHITE
Session: Poster Display
144P - Discovery of CBO421, a first-in-class Drug Fc-Conjugate (DFC), targeting CD73 in Cancer
Presenter: Simon Döhrmann
Session: Poster Display
145P - An Engineered Ligand-Trap Biologic Targeting the CD47 Signaling Pathway for Cancer Treatment with Superb Efficacy and Safety Profiles
Presenter: ZONG SEAN JUO
Session: Poster Display