Abstract 199P
Background
Highly multiplexed tissue imaging (HMTI) technologies have enabled the in-depth characterization of the tumor immune microenvironment (TIME) and how it relates to patient prognosis and treatment success. To analyze the TIME across breast, head and neck, colorectal, lung, and kidney cancer, the Integrated iMMUnoprofiling of large adaptive CANcer patient cohorts (IMMUcan) consortium performs broad molecular and cellular profiling of more than 2500 cancer patients, associated with longitudinal clinical data. As part of IMMUcan, multiplexed immunofluorescence (mIF) imaging detects major cell phenotypes across whole tissue slides while imaging mass cytometry (IMC) provides a zoomed in view on local cell phenotype interactions.
Methods
We developed two computational pipelines to process and analyze mIF and IMC data. The analysis of mIF data is supported by IFQuant, a web-based tool for image analysis that facilitates user-guided cell phenotyping. IMC data is analyzed using a workflow encompassing image analysis and machine learning-based cell phenotyping. Various computational approaches have been developed for the spatial analysis of HMTI data. First, the tysserand package allows the construction of spatial networks from which the mosna package computes cell phenotype assortativity scores. Second, the Spacelet and Cellohood models were developed to analyze higher-order interactions between cell phenotypes in tumor tissues.
Results
Based on a selected set of ten samples from five cancer indications, we validate that all major cell phenotypes as detected by the two computational pipelines show high correlation between mIF and IMC. The computed assortativity measures can be used for the definition of cellular niches and patient stratification. The Spacelet and Cellohood models allow the association of gradients of immune infiltration patterns and cellular neighborhoods to clinical data.
Conclusions
We have developed scalable computational tools for the analysis of mIF and IMC data within the IMMUcan consortium. These form a crucial foundation for the robust extraction of molecular features across five cancer indications facilitating patient stratification and clinical association studies.
Legal entity responsible for the study
EORTC.
Funding
IMI2 JU grant agreement 821558, supported by EU’s Horizon 2020 and EFPIA.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
46P - Immunoprofiling of Peripheral Blood Cells as a Potential Predictor of Immune-Related Toxicity of PD-1 Inhibitors
Presenter: Jan Podhorec
Session: Poster Display
47TiP - A real-world study of multiparametric prediction of the efficacy of immune checkpoint inhibitors in combination with chemotherapy for advanced non-small cell lung cancer
Presenter: Zihan Zhou
Session: Poster Display
51P - Phase 1B (Ph1b), MESOVAX clinical trial of pembrolizumab (P) and dendritic cell vaccine (DCvax) in advanced pleural and peritoneal mesothelioma (M): preliminary results
Presenter: Laura Ridolfi
Session: Poster Display
52P - The dependence of TKI-resistant lung cancer cells on EGFR increases sensitivity to EGFR-CAR NK.
Presenter: Sumei Chen
Session: Poster Display
53P - Integrin-_v_6 targeted CAR T-cells in an immunocompetent orthotopic model of pancreatic cancer
Presenter: Nicholas Brown
Session: Poster Display
55P - DPP9 promotes renal cancer PD-L1 expression through SHMT2-BRISC complex
Presenter: wei zhang
Session: Poster Display
56P - FOXM1D in T cells promotes the transcription of PD-1 by interacting with HCFC1 and regulating the killing of renal cancer cells
Presenter: yue wang
Session: Poster Display
57P - Anatomical location of metastasis and composition of the final infusion product in metastatic melanoma (MM) patients treated with tumor-infiltrating lymphocytes (TIL)
Presenter: Joachim Stoltenborg Granhøj
Session: Poster Display
58P - Natural high-avidity T-cell receptor efficiently mediates regression of cancer/testis antigen 83 positive common solid cancers
Presenter: Liangping Li
Session: Poster Display
59P - Revolutionizing cell therapy testing by co-culturing 3D patient derived cancer models and circulating immune cells on Organ-on-chip platform
Presenter: silvia Scaglione
Session: Poster Display