Abstract 199P
Background
Highly multiplexed tissue imaging (HMTI) technologies have enabled the in-depth characterization of the tumor immune microenvironment (TIME) and how it relates to patient prognosis and treatment success. To analyze the TIME across breast, head and neck, colorectal, lung, and kidney cancer, the Integrated iMMUnoprofiling of large adaptive CANcer patient cohorts (IMMUcan) consortium performs broad molecular and cellular profiling of more than 2500 cancer patients, associated with longitudinal clinical data. As part of IMMUcan, multiplexed immunofluorescence (mIF) imaging detects major cell phenotypes across whole tissue slides while imaging mass cytometry (IMC) provides a zoomed in view on local cell phenotype interactions.
Methods
We developed two computational pipelines to process and analyze mIF and IMC data. The analysis of mIF data is supported by IFQuant, a web-based tool for image analysis that facilitates user-guided cell phenotyping. IMC data is analyzed using a workflow encompassing image analysis and machine learning-based cell phenotyping. Various computational approaches have been developed for the spatial analysis of HMTI data. First, the tysserand package allows the construction of spatial networks from which the mosna package computes cell phenotype assortativity scores. Second, the Spacelet and Cellohood models were developed to analyze higher-order interactions between cell phenotypes in tumor tissues.
Results
Based on a selected set of ten samples from five cancer indications, we validate that all major cell phenotypes as detected by the two computational pipelines show high correlation between mIF and IMC. The computed assortativity measures can be used for the definition of cellular niches and patient stratification. The Spacelet and Cellohood models allow the association of gradients of immune infiltration patterns and cellular neighborhoods to clinical data.
Conclusions
We have developed scalable computational tools for the analysis of mIF and IMC data within the IMMUcan consortium. These form a crucial foundation for the robust extraction of molecular features across five cancer indications facilitating patient stratification and clinical association studies.
Legal entity responsible for the study
EORTC.
Funding
IMI2 JU grant agreement 821558, supported by EU’s Horizon 2020 and EFPIA.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
35P - Peripheral immunotype classification for monitoring Soft Tissue Sarcoma patients
Presenter: Jani Sofia Almeida
Session: Poster Display
36P - Expression of germinal center B cell- and Th17 cell-related transcripts are prognostic of soft-tissue sarcoma patient outcomes
Presenter: Giulia Petroni
Session: Poster Display
38P - Machine learning-based pathomics model to predict the infiltration of Treg and prognosis in IDH-wt GBM
Presenter: Shaoli Peng
Session: Poster Display
40P - The role of low avidity tumour-specific CD8+ T cells in immunotherapeutic response to anti-PD-1
Presenter: Doreen Lau
Session: Poster Display
41P - Contrasting drivers of response to immunotherapy across solid tumour types: results from analysis of >2500 cases
Presenter: Danwen Qian
Session: Poster Display
42P - TCCIA: A Comprehensive Resource for Exploring CircRNA in Cancer Immunotherapy
Presenter: Jian-Guo Zhou
Session: Poster Display
43P - Immune and tumor cells expression of VISTA in a panel of cancer indications: A strategy to inform selection of patients treated with anti-VISTA
Presenter: Pierre Launay
Session: Poster Display
44P - Exploratory Analysis of Peripheral Pharmacodynamic (PD) Biomarkers After Sitravatinib (Sitra) and Tislelizumab (TIS) in Advanced Solid Tumors: SAFFRON-103
Presenter: Yi-Long Wu
Session: Poster Display
45P - Protein biomarkers associated with organ-specific immune-related toxicity and response to management identified by proteome analysis of extracellular vesicles from plasma
Presenter: Anders Kverneland
Session: Poster Display