Abstract 9P
Background
Although the establishment of checkpoint inhibitors (CPIs) has shown great success in the treatment of cancer patients, a significant number of patients do not respond to it. This demonstrates the highly individualized nature of patient response to therapy, highlighting the need of a more tailored therapeutic approach. To this end, we have developed a functional 3D in vitro model, generated directly from primary tumor to evaluate personalized therapy options in a clinically relevant manner to improve outcome prediction.
Methods
Freshly resected NSCLC tumor material from 20 patients with different TPS Scores was mechanically and enzymatically digested to obtain a single cell suspension. PMTs were then generated by seeding the suspension into ultra-low attachment plates, preserving the original cell composition, which was characterized prior to drug administration after six days of tissue maturation. In addition to treating PMTs with CPIs, combinations with chemotherapies were applied. The dynamic drug response was monitored over 14 days, using bright field imaging. Further analysis of the drug response was performed by cytokine release as well as bulk RNA sequencing.
Results
To test immune modulators in vitro, it is necessary to preserve the immune compartment of the original tumor. FACS data confirmed, that during the maturation process of the NSLCL microtumors and beyond, the original cell compartments, including the various immune cell populations were largely preserved. Overall, the clinical routine categorized objective response rates reflected the clinical outcome distribution. In addition, immunotherapy treatment resulted in characteristic cytokine release and gene-pathway up/down regulation as a proof of concept to build a HUMAN LUNG CANCER RESPONSOME database linking a wide range of patient-specific functional outcomes with in-depth changes in individual pathways.
Conclusions
The present PMT model in combination with a clinically relevant drug response analysis is one of the first to show the typical immunotherapy-dependent alteration of TME as well as immunotherapy-induced cancer cell death in a scalable long-term in vitro assay.
Legal entity responsible for the study
A. Amann.
Funding
PreComb Therapeutics AG.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
137P - First-in-human results from a Phase I dose-escalation study of VSV-GP (BI 1831169) in patients with advanced solid tumors
Presenter: Stephane Champiat
Session: Poster Display
138P - Generation of frameshift mutated TGF_R2-specific T cells in healthy subjects following administration with cancer vaccine candidate FMPV-1/GM-CSF
Presenter: Else Inderberg
Session: Poster Display
139P - Safety and clinical activity of a novel anti-CCR8 antibody (LM-108) as a single agent or in combination with pembrolizumab in patients with advanced solid tumors: Results of phase 1 study
Presenter: Alexander Starodub
Session: Poster Display
140P - Eliciting mAbs targeting MHC-bound peptides with a novel antibody discovery platform
Presenter: Elli Sandberg
Session: Poster Display
141P - An IgE antibody targeting the melanoma-associated Chondroitin Sulfate Proteoglycan 4
Presenter: Lais Cristina Palhares
Session: Poster Display
142P - Identifying novel immunotherapy targets using machine learning and ex vivo validation
Presenter: Marcellus Augustine
Session: Poster Display
143P - Advancing Cancer Immunotherapy via HLA-G Pathway Modulation with UCB4594
Presenter: Ann WHITE
Session: Poster Display
144P - Discovery of CBO421, a first-in-class Drug Fc-Conjugate (DFC), targeting CD73 in Cancer
Presenter: Simon Döhrmann
Session: Poster Display
145P - An Engineered Ligand-Trap Biologic Targeting the CD47 Signaling Pathway for Cancer Treatment with Superb Efficacy and Safety Profiles
Presenter: ZONG SEAN JUO
Session: Poster Display
146P - A Novel Allosteric Oral Immunotherapy Small Molecule Modulates Adenosine 2A Receptor Signaling and Restores Anti-Tumor Immune Responses
Presenter: David Pejoski
Session: Poster Display