Abstract 9P
Background
Although the establishment of checkpoint inhibitors (CPIs) has shown great success in the treatment of cancer patients, a significant number of patients do not respond to it. This demonstrates the highly individualized nature of patient response to therapy, highlighting the need of a more tailored therapeutic approach. To this end, we have developed a functional 3D in vitro model, generated directly from primary tumor to evaluate personalized therapy options in a clinically relevant manner to improve outcome prediction.
Methods
Freshly resected NSCLC tumor material from 20 patients with different TPS Scores was mechanically and enzymatically digested to obtain a single cell suspension. PMTs were then generated by seeding the suspension into ultra-low attachment plates, preserving the original cell composition, which was characterized prior to drug administration after six days of tissue maturation. In addition to treating PMTs with CPIs, combinations with chemotherapies were applied. The dynamic drug response was monitored over 14 days, using bright field imaging. Further analysis of the drug response was performed by cytokine release as well as bulk RNA sequencing.
Results
To test immune modulators in vitro, it is necessary to preserve the immune compartment of the original tumor. FACS data confirmed, that during the maturation process of the NSLCL microtumors and beyond, the original cell compartments, including the various immune cell populations were largely preserved. Overall, the clinical routine categorized objective response rates reflected the clinical outcome distribution. In addition, immunotherapy treatment resulted in characteristic cytokine release and gene-pathway up/down regulation as a proof of concept to build a HUMAN LUNG CANCER RESPONSOME database linking a wide range of patient-specific functional outcomes with in-depth changes in individual pathways.
Conclusions
The present PMT model in combination with a clinically relevant drug response analysis is one of the first to show the typical immunotherapy-dependent alteration of TME as well as immunotherapy-induced cancer cell death in a scalable long-term in vitro assay.
Legal entity responsible for the study
A. Amann.
Funding
PreComb Therapeutics AG.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
181P - Tertiary lymphoid structures and B cells determine clinically relevant T cell phenotypes in ovarian cancer
Presenter: Jitka Palich Fucikova
Session: Poster Display
182P - Exploring Cross-Compartmental Tumor Cell Plasticity and Immunogenicity in Serous Ovarian Cancer
Presenter: Louisa Hell
Session: Poster Display
183P - Multi-omics Investigation Reveals Cancer-Associated Fibroblast-Secreted FGF7 as an Ovarian Cancer Progression Promoter through HIF-1_/EMT Modulation
Presenter: Songwei Feng
Session: Poster Display
184P - Elevated baseline circulating IL-8 is associated with increased expression of the IMmotion myeloid gene signature (GS) in metastatic clear cell renal cell carcinoma (mRCC) patients (pts) treated with nivolumab (nivo) within the NIVOREN GETUG-AFU 26 study.
Presenter: LUCIA CARRIL AJURIA
Session: Poster Display
185P - The Immunosuppressive Landscape of Leukemia Inhibitory Factor (LIF) in Clear Cell Renal Cell Carcinoma
Presenter: Yazan Al Zu’bi
Session: Poster Display
186P - Post-anti-PD1 tumor characterization of HPV-negative R/M SCCHN: an EORTC IMMUcan sub-project
Presenter: Athénaïs Van Der Elst
Session: Poster Display
187P - Local and systemic anti-tumor response during tumor development in an immune privileged site: the case of uveal melanoma
Presenter: Francesca Lucibello
Session: Poster Display
188P - Expression of the co-stimulatory checkpoint protein OX40L (TNFSF4) in the melanoma micro-environment
Presenter: Raya Leibowitz-Amit
Session: Poster Display
189P - The impact of immune microenvironment subopopulations on soft tissue sarcomas
Presenter: Shokhrukhbek Khujaev
Session: Poster Display