Abstract 202P
Background
Spatial imaging of single cells and their protein markers in multiple tumor tissues offers detailed insights into the mechanisms of tumor-microenvironment interactions. The identification and characterization of cellular neighborhoods are vital to elucidating these mechanisms. However, existing approaches for cellular neighborhood analyses resort to predefined cell types or coarse, neighborhood-wide cell marker aggregations, failing to preserve the marker information at the single-cell level resolution.
Methods
We developed Cellohood - the first permutation-invariant, transformer-based autoencoder designed to model cellular neighborhoods explicitly. Cellohood compresses information about each cell and its marker expression for a given neighborhood, providing representations of the cellular neighborhoods. Based on these representations, we derived novel cellular neighborhood prototypes. Cell types, protein markers, and spatial arrangement patterns describe each identified prototype. Consequently, patients can be described by the abundance of cellular neighborhood prototypes and their mutual arrangements.
Results
We showcased the performance of Cellohood by applying it to the Imaging Mass Cytometry data from a non-small cell lung cancer (NSCLC) patient cohort (N=192) from the IMMUcan (Integrated iMMUnoprofiling of large adaptive CANcer patient cohorts) consortium. Prototypes discovered by Cellohood, including tumor neighborhoods characterized by i) low B2M expression, ii) IDO1+ tumor cells, iii) plasma cell enrichment, and iv) T-reg infiltration, defined patient clustering that surpassed the TNM cancer staging in terms of survival prediction. Analysis of macrophage-enriched neighborhoods indicated that CD206+ macrophages are a key differentiating factor between cancer histologies.
Conclusions
Thanks to transformer-based generative modeling, Cellohood is the first model to utilize complete cell marker information during training without resorting to coarse, neighborhood-wide approximation. Results on the NSCLC cohort from the IMMUcan consortium demonstrated that Cellohood enables marker-driven discovery of tumor-microenvironment interactions and their clinical implications.
Legal entity responsible for the study
IMMUcan (Integrated iMMUnoprofiling of large adaptive CANcer patient cohorts).
Funding
IMI2 JU grant agreement 821558, supported by EU’s Horizon 2020 and EFPIA.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
90P - HAIC plus sintilimab and bevacizumab biosimilar as treatment for patients with advanced hepatocellular carcinoma (HCC): a phase II trial
Presenter: HAIBIN ZHANG
Session: Poster Display
91P - A real-world study of tislelizumab (Anti-PD-1) plus tyrosine kinase inhibitors for intermediate or advanced hepatocellular carcinoma
Presenter: Wei zhang
Session: Poster Display
92P - TAE-HAIC plus lenvatinib and PD-1 inhibitors versus TAE-HAIC plus atezolizumab and bevacizumab for unresectable hepatocellular carcinoma: A propensity score matching study
Presenter: hongjie Cai
Session: Poster Display
93P - The survival impact of the addition of durvalumab to cisplatin/gemcitabine in advanced biliary tract cancer: a real-world, retrospective, multicentric study.
Presenter: Margherita Rimini
Session: Poster Display
94P - First-line chemotherapy plus immunotherapy versus chemotherapy alone for advanced gallbladder carcinoma
Presenter: Qin-qin Liu
Session: Poster Display
95P - A single-arm, multicenter phase ? trial evaluating TQB2450 plus anlotinib combined with paclitaxel and cisplatin in first-line treatment of advanced esophageal squamous cell carcinoma (ESCC)
Presenter: Junsheng Wang
Session: Poster Display
97P - ICI for patients with MSS metastatic colorectal cancer
Presenter: Zayana Sangadzhieva
Session: Poster Display
Resources:
Abstract
99P - Efficacy and safety of toripalimab plus metronomic chemotherapy in HER2 negative metastatic breast cancer
Presenter: Hongnan Mo
Session: Poster Display