Abstract 202P
Background
Spatial imaging of single cells and their protein markers in multiple tumor tissues offers detailed insights into the mechanisms of tumor-microenvironment interactions. The identification and characterization of cellular neighborhoods are vital to elucidating these mechanisms. However, existing approaches for cellular neighborhood analyses resort to predefined cell types or coarse, neighborhood-wide cell marker aggregations, failing to preserve the marker information at the single-cell level resolution.
Methods
We developed Cellohood - the first permutation-invariant, transformer-based autoencoder designed to model cellular neighborhoods explicitly. Cellohood compresses information about each cell and its marker expression for a given neighborhood, providing representations of the cellular neighborhoods. Based on these representations, we derived novel cellular neighborhood prototypes. Cell types, protein markers, and spatial arrangement patterns describe each identified prototype. Consequently, patients can be described by the abundance of cellular neighborhood prototypes and their mutual arrangements.
Results
We showcased the performance of Cellohood by applying it to the Imaging Mass Cytometry data from a non-small cell lung cancer (NSCLC) patient cohort (N=192) from the IMMUcan (Integrated iMMUnoprofiling of large adaptive CANcer patient cohorts) consortium. Prototypes discovered by Cellohood, including tumor neighborhoods characterized by i) low B2M expression, ii) IDO1+ tumor cells, iii) plasma cell enrichment, and iv) T-reg infiltration, defined patient clustering that surpassed the TNM cancer staging in terms of survival prediction. Analysis of macrophage-enriched neighborhoods indicated that CD206+ macrophages are a key differentiating factor between cancer histologies.
Conclusions
Thanks to transformer-based generative modeling, Cellohood is the first model to utilize complete cell marker information during training without resorting to coarse, neighborhood-wide approximation. Results on the NSCLC cohort from the IMMUcan consortium demonstrated that Cellohood enables marker-driven discovery of tumor-microenvironment interactions and their clinical implications.
Legal entity responsible for the study
IMMUcan (Integrated iMMUnoprofiling of large adaptive CANcer patient cohorts).
Funding
IMI2 JU grant agreement 821558, supported by EU’s Horizon 2020 and EFPIA.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
136P - Circadian rhythm positioned chronomodulated-SBRT with Cancer associated fibroblast elimination theranostic treatment to harmonize resistant TFG-Beta stromal microenvironment in conjunction with PDL-1 based immunotherapy in disseminated cancers-Concept randomised study.
Presenter: G Lohith
Session: Poster Display
137P - First-in-human results from a Phase I dose-escalation study of VSV-GP (BI 1831169) in patients with advanced solid tumors
Presenter: Stephane Champiat
Session: Poster Display
138P - Generation of frameshift mutated TGF_R2-specific T cells in healthy subjects following administration with cancer vaccine candidate FMPV-1/GM-CSF
Presenter: Else Inderberg
Session: Poster Display
139P - Safety and clinical activity of a novel anti-CCR8 antibody (LM-108) as a single agent or in combination with pembrolizumab in patients with advanced solid tumors: Results of phase 1 study
Presenter: Alexander Starodub
Session: Poster Display
140P - Eliciting mAbs targeting MHC-bound peptides with a novel antibody discovery platform
Presenter: Elli Sandberg
Session: Poster Display
141P - An IgE antibody targeting the melanoma-associated Chondroitin Sulfate Proteoglycan 4
Presenter: Lais Cristina Palhares
Session: Poster Display
142P - Identifying novel immunotherapy targets using machine learning and ex vivo validation
Presenter: Marcellus Augustine
Session: Poster Display
143P - Advancing Cancer Immunotherapy via HLA-G Pathway Modulation with UCB4594
Presenter: Ann WHITE
Session: Poster Display
144P - Discovery of CBO421, a first-in-class Drug Fc-Conjugate (DFC), targeting CD73 in Cancer
Presenter: Simon Döhrmann
Session: Poster Display
145P - An Engineered Ligand-Trap Biologic Targeting the CD47 Signaling Pathway for Cancer Treatment with Superb Efficacy and Safety Profiles
Presenter: ZONG SEAN JUO
Session: Poster Display