Abstract 202P
Background
Spatial imaging of single cells and their protein markers in multiple tumor tissues offers detailed insights into the mechanisms of tumor-microenvironment interactions. The identification and characterization of cellular neighborhoods are vital to elucidating these mechanisms. However, existing approaches for cellular neighborhood analyses resort to predefined cell types or coarse, neighborhood-wide cell marker aggregations, failing to preserve the marker information at the single-cell level resolution.
Methods
We developed Cellohood - the first permutation-invariant, transformer-based autoencoder designed to model cellular neighborhoods explicitly. Cellohood compresses information about each cell and its marker expression for a given neighborhood, providing representations of the cellular neighborhoods. Based on these representations, we derived novel cellular neighborhood prototypes. Cell types, protein markers, and spatial arrangement patterns describe each identified prototype. Consequently, patients can be described by the abundance of cellular neighborhood prototypes and their mutual arrangements.
Results
We showcased the performance of Cellohood by applying it to the Imaging Mass Cytometry data from a non-small cell lung cancer (NSCLC) patient cohort (N=192) from the IMMUcan (Integrated iMMUnoprofiling of large adaptive CANcer patient cohorts) consortium. Prototypes discovered by Cellohood, including tumor neighborhoods characterized by i) low B2M expression, ii) IDO1+ tumor cells, iii) plasma cell enrichment, and iv) T-reg infiltration, defined patient clustering that surpassed the TNM cancer staging in terms of survival prediction. Analysis of macrophage-enriched neighborhoods indicated that CD206+ macrophages are a key differentiating factor between cancer histologies.
Conclusions
Thanks to transformer-based generative modeling, Cellohood is the first model to utilize complete cell marker information during training without resorting to coarse, neighborhood-wide approximation. Results on the NSCLC cohort from the IMMUcan consortium demonstrated that Cellohood enables marker-driven discovery of tumor-microenvironment interactions and their clinical implications.
Legal entity responsible for the study
IMMUcan (Integrated iMMUnoprofiling of large adaptive CANcer patient cohorts).
Funding
IMI2 JU grant agreement 821558, supported by EU’s Horizon 2020 and EFPIA.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
46P - Immunoprofiling of Peripheral Blood Cells as a Potential Predictor of Immune-Related Toxicity of PD-1 Inhibitors
Presenter: Jan Podhorec
Session: Poster Display
47TiP - A real-world study of multiparametric prediction of the efficacy of immune checkpoint inhibitors in combination with chemotherapy for advanced non-small cell lung cancer
Presenter: Zihan Zhou
Session: Poster Display
51P - Phase 1B (Ph1b), MESOVAX clinical trial of pembrolizumab (P) and dendritic cell vaccine (DCvax) in advanced pleural and peritoneal mesothelioma (M): preliminary results
Presenter: Laura Ridolfi
Session: Poster Display
52P - The dependence of TKI-resistant lung cancer cells on EGFR increases sensitivity to EGFR-CAR NK.
Presenter: Sumei Chen
Session: Poster Display
53P - Integrin-_v_6 targeted CAR T-cells in an immunocompetent orthotopic model of pancreatic cancer
Presenter: Nicholas Brown
Session: Poster Display
55P - DPP9 promotes renal cancer PD-L1 expression through SHMT2-BRISC complex
Presenter: wei zhang
Session: Poster Display
56P - FOXM1D in T cells promotes the transcription of PD-1 by interacting with HCFC1 and regulating the killing of renal cancer cells
Presenter: yue wang
Session: Poster Display
57P - Anatomical location of metastasis and composition of the final infusion product in metastatic melanoma (MM) patients treated with tumor-infiltrating lymphocytes (TIL)
Presenter: Joachim Stoltenborg Granhøj
Session: Poster Display
58P - Natural high-avidity T-cell receptor efficiently mediates regression of cancer/testis antigen 83 positive common solid cancers
Presenter: Liangping Li
Session: Poster Display
59P - Revolutionizing cell therapy testing by co-culturing 3D patient derived cancer models and circulating immune cells on Organ-on-chip platform
Presenter: silvia Scaglione
Session: Poster Display