Abstract 175P
Background
Ki67 is an important BC marker, especially for adjuvant treatment in HR+, HER2- cases. Working groups have provided guidance for Ki67 immunohistochemistry (IHC) BC scoring to limit pathologist’s variability, but no scoring method has been universally accepted. Rapid and reliable image analysis solutions to support scoring have surfaced for the Ki67 assessment. We compared Ki67 scoring with Aiforia® Platform (AI deep learning image analysis), Halo® (image analysis supervised software) and 2 independent pathologists (patho) in a BC population.
Methods
We stained 114 BC tumors for Ki67 on the Dako Omnis. Three methodologies were used to quantify ki67+ tumor cells: 1) A deep learning approach model was trained for BC and the Ki67 clone by Aiforia; 2) Two pathos (Patho A and Patho B) were trained following the International Ki67 Working Group guidelines. Intra-analysis assessment was done for one patho; 3) The random forest classifier from Halo was used to separate the image into tumor, non-tumor and background with patho approval. After cell segmentation, Ki67 positivity was assessed by thresholding. The time needed to complete the analyses was recorded for each method.
Results
Intra-pathologist analysis showed a very high reproducibility (r2=0.95) while matched pair analysis between two patho was lower (r2=0.86) despite following guidelines. Our study shows a high consistency of Ki67 results between AI and the other methods (patho A-AI, r2=0.92; B-AI, r2=0.90; Halo-AI, r2=0.93). The correlation obtained between Halo scoring was not as good, but within an acceptable range (Halo-A, r2=0.79, Halo-B, r2=0.84). The deep learning AI approach was the quickest even including the model training (total time: 2.5 hrs). Pathos time ranged from 22 to 28 hrs without a major gain in analysis time in the second review. Halo took 28 hours including application development, pathologist verification, and analysis.
Conclusions
Overall, the ki67 tumor analysis approaches were quite comparable. AI-based image analysis tools offer valuable assistance in Ki67 scoring and could reduce inter-pathologist variability. These results demonstrate the time benefit of using an AI-driven method for Ki67 analysis in breast cancer.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
183P - Development of a cadherin-17 (CDH17) immunohistochemistry assay for use as a companion diagnostic for cabotamig in gastrointestinal cancers
Presenter: Dennis Wong
Session: Poster session 08
184P - From breast and gastric to beyond: Expanding HER2 detection in solid tumors using quantitative RNA and protein analysis
Presenter: Kristian Egebjerg
Session: Poster session 08
185P - Multi-omics profiling and clinical characterization of colon-like cancer of unknown primary (CUP)
Presenter: Maria Pouyiourou
Session: Poster session 08
186P - Differences in antigen and immune marker expression in lymphoepithelioma-like carcinoma (LELC) and nasopharyngeal carcinoma (NPC): A multiplex immunohistochemistry (mIHC), spatial transcriptomic and multiplex immunofluorescence (mIF)-based analysis
Presenter: Daniel Peh
Session: Poster session 08
187P - Organoid growth-based oncological sensitivity test (OncoSensi) for predicting radiation therapy outcomes in pharyngeal and esophageal cancer
Presenter: Dong Woo Lee
Session: Poster session 08
188P - Integration of immunohistochemistry and transcriptomics reveals new insights into the immune landscape of soft-tissue sarcomas
Presenter: Giulia Petroni
Session: Poster session 08
189P - An image-based deep learning prediction model for characterization of the drug tolerant persister cell state
Presenter: Lauren Cech
Session: Poster session 08
190P - A large scale proteogenomics atlas for precision oncology research
Presenter: Timothy Anthony Yap
Session: Poster session 08
191P - Understanding and overcoming resistance to selective FGFR inhibitors across FGFR2-driven tumors
Presenter: Francesco Facchinetti
Session: Poster session 08
192P - Use of biosimulation to predict homologous recombination deficiency and PARPi benefit in patients with ovarian, pancreatic, prostate and triple negative breast cancers
Presenter: Daniel Palmer
Session: Poster session 08