Abstract 206P
Background
Endometrial cancer (EC) is most strongly associated with obesity compared to all other cancers. As the population with obesity and metabolic disorders rises globally, the incidence and mortality of EC increase remarkedly. Metabolic syndrome (MS) is not only related to the occurrence of EC, but in recent years, researchers have shown that MS also plays an important role in the progression and poor prognosis of EC. However, the mechanism is unclear.
Methods
Untargeted and targeted metabolomics, multiplex immune fluorescence staining, Raman spectroscopy, Co-IP, GST-pull down, surface plasmon resonance, thermal stability assay, cellular immunofluorescence, gene knockdown, gene overexpression, WB, CCK-8, wound healing, transwell, qPCR, half-life assay, in-situ and LNM xenograft mice model were used.
Results
We found that polyamine metabolites were significantly elevated in the serum of EC with MS (ECWMS). Hyperlipidemia is a key factor in promoting ECWMS, and oleic acid (OA), a very important monounsaturated fatty acid was screened out from 12 common fatty acids as a key factor in upregulating the Ornithine Decarboxylase 1 (ODC1), the rate-limiting enzyme in polyamine metabolism, and downstream polyamines in the EC cell lines. Mechanistically, OA directly binds to HOXB9 and stabilizes it by preventing its interaction with E3 ligases Praja2. HOXB9 further interacts with ODC1 and competes with the interaction between Antizyme 1 (OAZ1) and ODC1 for proteasomal degradation. Downstream accumulation of polyamine metabolites, especially putrescine, further in turn inhibits the degradation of HOXB9. Targeting feedback of the HOXB9-ODC1-polyamine axis decreases polyamines and inhibits tumor proliferation and metastasis in vitro and in vivo. Clinically, the combination of ODC1, HOXB9, and obesity could better differentiate the prognosis. Multiplex IHC and Ramen spectroscopy indicated that the lipid-HOXB9-ODC1 axis also exists in ECWMS.
Conclusions
This study links fatty acid levels to polyamine accumulation, ultimately promoting EC progression and unveiling the mechanism for MS promoting EC progression. Targeting HOXB9 or ODC1 is expected to be a potential therapeutic strategy to control patients with MS-related refractory or progressive EC.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
National Science Foundation of China.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
708P - The Empower Pathway: An audit of the first 150 patients. Enhanced personalised care of testicular cancer survivors
Presenter: Penny Champion
Session: Poster session 09
817P - A machine learning algorithm utilizing clinicopathologic parameters for extranodal natural killer/T cell lymphoma
Presenter: Shuo Li
Session: Poster session 09
Resources:
Abstract
818P - The association between hospital volume and overall survival in adult AML patients treated with intensive chemotherapy
Presenter: Z.L.Rana Kaplan
Session: Poster session 09
819P - Efficacy and safety of orelabrutinib plus R-CHOP-like regimens for treatment-naïve diffuse large B-cell lymphoma with double expression
Presenter: Wei Wan
Session: Poster session 09
820P - Second primary malignancies and disease transformation in symptomatic patients with Waldenstrom’s macroglobulinemia: Outcomes of a population-based analysis
Presenter: Vasiliki Spiliopoulou
Session: Poster session 09
821P - Circulating chromosomal alterations in lymphoid malignancies
Presenter: Rosalie Griffin
Session: Poster session 09
822P - Preliminary results from a phase Ib study of amulirafusp alfa (IMM0306) in combination with lenalidomide in patients with relapsed or refractory CD20-positive B-cell non-Hodgkin's lymphoma
Presenter: Lijuan Deng
Session: Poster session 09
823P - The bone marrow immune ecosystem shapes acquired resistance to daratumumab in plasma cell myeloma
Presenter: Yun Wang
Session: Poster session 09
824P - FLT3-ITD induces immune escape in AML via up-regulating CD47 expression and decreased phagpcytic ability of macrophages
Presenter: Shuzhao Chen
Session: Poster session 09
825P - Ultra-sensitive cfDNA analysis for minimally invasive measurable residual disease detection and profiling in multiple myeloma
Presenter: Natalia Buenache
Session: Poster session 09