Abstract 35P
Background
Azenosertib is a highly potent and selective WEE1 kinase inhibitor that induces replication stress, DNA damage and mitotic catastrophe. It has shown significant preclinical efficacy as monotherapy and in combination with DNA damaging agents. Topoisomerase I (TOP1) inhibitors interrupt DNA replication and induce DNA damage, leading to cell cycle arrest for DNA repair. Azenosertib overrides cell cycle arrest, resulting in premature mitotic entry of cells with unrepaired DNA, ultimately leading to cell death. The confluence of DNA repair and cell cycle regulation provides a mechanistic rationale combining azenosertib with TOP1 inhibitors, as well as antibody drug conjugates (ADCs) utilizing these inhibitors as payloads.
Methods
Synergy between azenosertib and TOP1 inhibitors (irinotecan, SN38 and deruxtecan (Dxd)) was evaluated in cell lines across several cancer types. DNA damage and apoptosis were examined by western blot. Anti-tumor effect of azenosertib and TOP1 inhibitors were evaluated in HCC1569 model (HER2+ breast cancer) and OV90 model (ovarian cancer). The combination of azenosertib and sacituzumab govitecan (SG) (TROP2 ADC with an SN38 payload) or trastuzumab deruxtecan (T-Dxd) (HER2 ADC with a Dxd payload) were evaluated in MDA-MB-231 or HCC1569 model, respectively.
Results
The combination of azenosertib with TOP1 inhibitors demonstrated significant synergistic effects in all cell lines tested. A significant increase in γH2AX and cleaved caspase-3 was observed in the combination treated cells. The combination of azenosertib with irinotecan enhanced tumor growth inhibition in HCC1569 and OV90 models. Additionally, azenosertib significantly improved the efficacy of SG in the TROP2low MDA-MB-231 model. Azenosertib in combination with T-Dxd resulted in 50% of animals showing complete tumor regression (CR), compared with no CRs in monotherapy arms in HCC1569 model.
Conclusions
These data suggest that azenosertib significantly improves the anti-tumor effect of TOP1 inhibitors as well as ADCs with TOP1 inhibitor payload. The combination could be a generalizable therapeutic approach for improving responses to ADCs in patients with advanced solid tumors.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Zentalis Pharmaceuticals Inc.
Funding
Has not received any funding.
Disclosure
J. Ma, X. Guo, C. Lee, O. Harismendy, A. Jubb, D. Kim, M.R. Lackner: Financial Interests, Personal, Full or part-time Employment: Zentalis Pharmarceuticals Inc. F. Meric-Bernstam: Financial Interests, Personal, Other, Consultant: AstraZeneca, OnCusp Therapeutics, Zymeworks; Financial Interests, Personal, Other, Consulting: Calibr, Ecor1, Exelixis, GT Aperion, Infinity Pharmaceuticals, Loxo-Oncology, LegoChem Bio, Lengo Therapeutics, Tallac Therapeutics, Becton Dickinson, eFFECTOR Therapeutics, Jazz Pharmaceuticals; Financial Interests, Personal, Advisory Board: Daiichi Sankyo, Incyte, Karyopharm, Protai, TheraTechnologies, Zentalis, FogPharma, Harbinger Health, Mersana Therapeutics, Sanofi Pharmaceuticals; Financial Interests, Personal, Other, Consutling: Menarini Group; Financial Interests, Personal, Advisory Board, Advisory Board/Consultant: Seagen; Financial Interests, Personal, Invited Speaker: Dava Oncology; Financial Interests, Institutional, Other, Local PI/Research Grant: Aileron Therapeutics, Bayer Healthcare, CytomX Therapeutics Inc., Daiichi Sankyo Co. Ltd., eFFECTOR Therapeutics, Taiho Pharmaceutical Co.; Financial Interests, Institutional, Other, Local PI/Research Grant/Coordinating PI: AstraZeneca; Financial Interests, Institutional, Local PI: Calithera Biosciences, Curis Inc., Debiopharm International, Guardant Health Inc., Klus Pharma, Novartis, Jazz Pharmaceuticals, Zymeworks; Financial Interests, Institutional, Other, Local PI/Steering Committee Member: Genentech Inc.; Financial Interests, Institutional, Research Grant: Takeda Pharmaceutical Co., Puma Biotechnology Inc., Repare; Other, Travel support: European Organisation for Research and Treatment of Cancer (EORTC), European Society for Medical Oncology (ESMO); Other, Travel Support: Cholangiocarcinoma Foundation, Dava Oncology.
Resources from the same session
1812TiP - IDeate-Lung03: A Phase Ib/II study of ifinatamab deruxtecan (I-DXd) plus atezolizumab (atezo) with or without carboplatin (carbo) as first-line (1L) induction or maintenance in patients (pts) with extensive stage (ES) small cell lung cancer (SCLC)
Presenter: Charles Rudin
Session: Poster session 07
1813TiP - Debio 0123, a highly selective WEE1 inhibitor, combined with carboplatin (CP) and etoposide (ETOP) in patients (pts) with small cell lung cancer (SCLC) that progressed after platinum-based therapy: A phase I dose escalation and expansion study
Presenter: Valentina Gambardella
Session: Poster session 07
2P - Single-cell profiling and integrative TCR analysis reveals tumor-mutation associated phenotypes and immune repertoire in lung adenocarcinoma
Presenter: Alexander Lozano
Session: Poster session 07
3P - Metabolic reprogramming induced by KEAP1 mutation in NSCLC
Presenter: Renata Akhmetzianova
Session: Poster session 07
4P - CBL-B inhibition overcomes PD-1/LAG-3 mediated resistance in lung cancer
Presenter: Luisa Chocarro
Session: Poster session 07
5P - Circulating tumor cell-derived organoids from lung adenocarcinoma patients for assessment of EGFR and KRAS mutations
Presenter: Mohamed Lahmadi
Session: Poster session 07
6P - Circulating low-density neutrophils (LDNs) are associated with resistance to immunotherapy as frontline treatment for non-small cell lung cancer (NSCLC): Updated results and proteomic characterization
Presenter: Natalia Castro Unanua
Session: Poster session 07
7P - Association study between genetic variants in regulatory gene for RNA modification and prognosis in non-small cell lung cancer
Presenter: Eungbae Lee
Session: Poster session 07
8P - Profiling of zidesamtinib and other ROS1 inhibitors in an intracranial CD74-ROS1 G2032R preclinical model
Presenter: ANUPONG TANGPEERACHAIKUL
Session: Poster session 07
9P - Small-extracellular vesicles derived from NSCLC cells dampen the CD8+ T cell response against tumor
Presenter: Manon CHANG
Session: Poster session 07