Abstract 5P
Background
Liquid biopsy serve as a potential alternative to repeat invasive biopsy for tumor genomic profiling in patients with metastatic cancer. Circulating tumor cells (CTCs), as a component of liquid biopsies, could be a source of cancer–specific DNA. With the advent of patient-derived organoid culture approaches, there is the possibility of in vitro expansion of CTCs and these could be employed to examine a range of somatic variants. The current study aimed to establish CTC-derived organoids (CTCDO) from patients with lung adenocarcinoma (LUDC) and explore them for the assessment of EGFR and KRAS mutation status.
Methods
Blood samples were collected from 20 LUDC patients, including 12 (60%) men and 8 (40%) women, 9 smokers (45%), 2 ex-smokers (10%) and 9 non-smokers (45%). CTCs were enriched from 4 mL blood by antibody-based negative depletion. Then, enriched CTC fractions were cultured in vitro (3D) under optimized conditions to expand organoids. Further, we examined the presence of EGFR (exons 19-21) and KRAS (exon 2) mutations in expanded CTCDOs using Sanger sequencing.
Results
Short-term CTC 3D cultures were successfully generated from isolated CTCs in 15 (75%) LUDC patients (passages 2-7), of which 2 (13.3%) were non-metastatic cases. Almost all CTCDOs showed positive staining of TFF1 and negative staining of CD45. EGFR mutation (Exon21-L858R) was detected in seven (46.6%) cases. In one patient harboring L858R mutation, with available paired primary and expanded CTC, this mutation was confirmed in CTCDO. Moreover, KRAS mutation (Exon2-G12D) was identified in 2 (25%) wild-type EGFR cases.
Conclusions
We have successfully isolated and expanded CTCs from patients with LUDC. CTCDOs culture allowed for expansion of cells to a critical mass and exploration of them to assess mutations using less sensitive techniques. This non-invasive way could be alternative to tissue biopsies in patients with small biopsy and/or requiring a rebiopsy for molecular testing. Further optimization of the culture methodology is required, concomitantly with the functional and molecular characterization, with the aim of establishing CTCDO models for treatment response prediction and studying tumor heterogeneity and metastatic cascade.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
M. Lahmadi.
Funding
The national Directorate-General for Scientific Research and Technological Development (DGRSDT).
Disclosure
The author has declared no conflicts of interest.
Resources from the same session
1781P - Multi-omics of soft tissue sarcomas with complex karyotypes: Investigating genomic and transcriptomic differences between cell lines of the same subtype
Presenter: Miriam Arrulo
Session: Poster session 07
1782P - Assessing the role of denosumab in managing aneurysmal bone cysts: A scoping review
Presenter: Vinesh Sandhu
Session: Poster session 07
1783P - Genetic predisposition in adult sarcoma patients: Beyond TP53
Presenter: Olivia Rohr
Session: Poster session 07
1784TiP - Pasireotide as maintenance treatment in SSTR2/3/5-expressing synovial sarcoma and desmoplastic small round cell tumor: The PAMSARC study
Presenter: Richard Schlenk
Session: Poster session 07
1785TiP - PERELI, a phase II, open label, multicenter study of pemigatinib and retifanlimab in advanced dedifferentiated liposarcoma
Presenter: Helena Nyström
Session: Poster session 07
1787P - Intracranial response in patients (pts) with baseline (BL) brain metastases (BM) and extensive-stage (ES) small cell lung cancer (SCLC) treated with ifinatamab deruxtecan (I-DXd) in the IDeate-Lung01 study
Presenter: Melissa Johnson
Session: Poster session 07
1790P - Phase II data of lurbinectedin (LUR) and irinotecan (IRI) in relapsed small cell lung cancer (SCLC) patients (pts) with chemotherapy-free interval (CTFI)>30 days (d)
Presenter: Jon Zugazagoitia
Session: Poster session 07