Abstract 830P
Background
Current pediatric acute myeloid leukemia (pAML) risk stratification heavily relies on cytogenetic findings. However, despite the generally low-risk feature associated with RUNX1-RUNX1T1 fusion gene, a substantial proportion of patients still experience unfavorable overall survival (OS) and/or event-free survival (EFS). Hence, a specific clinical decision support tool is crucial for the precise evaluation of survival in RUNX1-RUNX1T1+ pAML patients, aiming for enhanced outcomes.
Methods
The study included 2009 pAML patients, of whom 284 carried the RUNX1-RUNX1T1 fusion gene (RR-pAML). The patient data was randomly divided into training and validation subsets; the primary endpoints were OS and EFS. The prognostic model was constructed using univariate and multivariate Cox analyses. Model performance was evaluated using C-index and AUC values.
Results
The RR-pAML model was constructed based on two clinical factors. This model effectively categorized patients into low- and high-risk groups, which exhibited distinct clinical characteristics, response rates, relapse risk and mortality. The 5-year OS rates for the low- and high-risk groups were 91.0% and 73.0%, respectively (p=0.024, AUC 0.69). For EFS, the 5-year rates were 76.8% and 50.2%, respectively (p<0.001, AUC 0.70). Compared to previous prognostic models, the new model demonstrated superior performance in C-index and AUCs. It reclassified 31.7% of patients into the high-risk category and predicted relapse risk.
Conclusions
The new model is a straightforward yet effective clinical stratification tool for pAML patients carrying the RUNX1-RUNX1T1 fusion gene; it enhances risk assessment and facilitates more informed decision-making in the management of RUNX1-RUNX1T1+ patients.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1173P - Combining mass spectrometry with quantitative continuous scoring to unlock the full quantitative potential of immunohistochemistry
Presenter: Ana Hidalgo-Sastre
Session: Poster session 09
1174P - FLAMINGO: Accurate cancer detection from ultra-low-pass whole genome sequencing of cell-free DNA
Presenter: Daan Vessies
Session: Poster session 09
1175P - Universal circulating tumor DNA quantification using deep learning
Presenter: Anders Skanderup
Session: Poster session 09
Resources:
Abstract
1176P - Potential utility of ctDNA to detect false positive PET/CT in the evaluation of lymphoma response
Presenter: Alejandro martín-muñoz
Session: Poster session 09
1177P - FRESH: The Gustave Roussy program to facilitate access to liquid biopsy for precision oncology in France
Presenter: Etienne Rouleau
Session: Poster session 09
1178P - EGFR evaluation in non-small cell lung cancer: An artificial intelligence approach to pre-molecular analysis
Presenter: Chad Vanderbilt
Session: Poster session 09
1179P - WomEC: a novel diagnostic test for the detection of endometrial cancer in uterine fluids
Presenter: Antonio Gil-Moreno
Session: Poster session 09
1180P - An integrated metabolomics-based platform for early-stage detection of multiple cancers
Presenter: imliwati longkumer
Session: Poster session 09
1181P - Diagnostic target product profiles for cancer: A demand signaling tool to stimulate innovation in early cancer diagnosis
Presenter: Sonja Marjanovic
Session: Poster session 09