Abstract 830P
Background
Current pediatric acute myeloid leukemia (pAML) risk stratification heavily relies on cytogenetic findings. However, despite the generally low-risk feature associated with RUNX1-RUNX1T1 fusion gene, a substantial proportion of patients still experience unfavorable overall survival (OS) and/or event-free survival (EFS). Hence, a specific clinical decision support tool is crucial for the precise evaluation of survival in RUNX1-RUNX1T1+ pAML patients, aiming for enhanced outcomes.
Methods
The study included 2009 pAML patients, of whom 284 carried the RUNX1-RUNX1T1 fusion gene (RR-pAML). The patient data was randomly divided into training and validation subsets; the primary endpoints were OS and EFS. The prognostic model was constructed using univariate and multivariate Cox analyses. Model performance was evaluated using C-index and AUC values.
Results
The RR-pAML model was constructed based on two clinical factors. This model effectively categorized patients into low- and high-risk groups, which exhibited distinct clinical characteristics, response rates, relapse risk and mortality. The 5-year OS rates for the low- and high-risk groups were 91.0% and 73.0%, respectively (p=0.024, AUC 0.69). For EFS, the 5-year rates were 76.8% and 50.2%, respectively (p<0.001, AUC 0.70). Compared to previous prognostic models, the new model demonstrated superior performance in C-index and AUCs. It reclassified 31.7% of patients into the high-risk category and predicted relapse risk.
Conclusions
The new model is a straightforward yet effective clinical stratification tool for pAML patients carrying the RUNX1-RUNX1T1 fusion gene; it enhances risk assessment and facilitates more informed decision-making in the management of RUNX1-RUNX1T1+ patients.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
Has not received any funding.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
212P - BRGSF-HIS mice as a predictive tool for safety assessment of biologics
Presenter: Kader Thiam
Session: Poster session 09
213P - Constructing a high-definition patient-digital twin (PDT) in treatment-naïve women with advanced cancer
Presenter: Leonardo Garma
Session: Poster session 09
215P - Detection of MUTYH for the prognosis and chemotherapy responsiveness of patients with non-small cell lung cancer
Presenter: Chi Wai Wong
Session: Poster session 09
216P - β-catenin is a potential prognostic biomarker in uterine sarcoma
Presenter: Ying Cai
Session: Poster session 09
218P - Exploiting a unique glycosaminoglycan for novel pan-cancer therapies and diagnostics
Presenter: Mette Agerbæk
Session: Poster session 09
219P - The landscape and prognostic impact of germline HLA-A subtypes in patients with advanced solid cancers
Presenter: Kyrillus Shohdy
Session: Poster session 09
220P - The role of fucosyltransferase 1 (FUT1) in CRC as a putative prognostic and predictive biomarker
Presenter: Lorenz Pammer
Session: Poster session 09
221P - ANGPTL4's role in cancer: A meta analysis and bioinformatics exploration
Presenter: Osama Younis
Session: Poster session 09
222P - Artificial intelligence (AI) based prognostication from baseline computed tomography (CT) scans in a phase III advanced non-small cell lung cancer (aNSCLC) trial
Presenter: Omar Khan
Session: Poster session 09