Abstract 119P
Background
Fusion genes drive oncogenesis, and accurate pathogenicity assessment is crucial for therapeutic decisions. We have previously developed a system that leverages machine learning on known fusion genes to predict the pathogenicity of novel ones and explain its reasoning using large language model (LLM) (Cancers, accepted). This system achieved an accuracy of 0.98, comparable to the existing technologies, and provides explanations in natural language, a unique feature. However, these evaluations were performed on known data, leaving the accuracy and explanatory power for truly unknown fusion genes unclear. Evaluating explanatory power is challenging and requires multifaceted assessment.
Methods
This study focused on particular set of fusion genes with predictable mechanisms. We used BCR, involved in tumorigenesis, as the 5' partner, and selected 3' partners containing a kinase domain unreported with BCR. We input literature on BCR 5’ fusion genes into an LLM, and had it explain the mechanism of unreported BCR 5’ fusion genes with a 3’ kinase domain.
Results
Among the BCR fusion genes with unknown kinase partners, 30 were predicted as "Pathogenic” with high score. Among the 3' partner genes, receptor tyrosine kinases were the most frequent, followed by cell adhesion and extracellular matrix-related genes. The LLM generated domain-based hypotheses for the pathogenicity mechanisms of BCR fusion genes with unknown partners, considering the mechanisms of BCR::ABL1 and BCR::JAK2.
Conclusions
This study presents a novel approach for predicting and explaining the pathogenicity of unknown fusion genes, demonstrating its potential in certain cases. While the strength of evidence for the inferred mechanisms varied, this research suggests that more reliable explanations can be obtained for specific fusion genes, and further validation is needed for others. Experimental verification is necessary to confirm the validity of the hypotheses.
Clinical trial identification
Editorial acknowledgement
During the preparation of this work the author(s) used ChatGPT and Claude in order to suggest alternative phrasings, and improve clarity and readability. After using this tool/service, the author(s) reviewed and edited the content as needed and take(s) full responsibility for the content of the publication.
Legal entity responsible for the study
Fujitsu Ltd.
Funding
Fujitsu Ltd.
Disclosure
K. Murakami, S. Tago, S. Takishita, H. Morikawa, R. Kojima, M. Fuji: Financial Interests, Personal, Full or part-time Employment: Fujitsu Ltd.. K. Yokoyama, M. Ogawa, H. Fukushima, H. Takamori, Y. Nannya, S. Imoto: Financial Interests, Institutional, Funding: Fujitsu Ltd.
Resources from the same session
133P - Neoadjuvant pembrolizumab plus lenvatinib in resectable stage III melanoma patients (pts) (NeoPele): Analysis of the peripheral immune profile correlated to pathological response
Presenter: Ines Pires da Silva
Session: Poster session 08
134P - Unraveling functionally distinct metabolic programs to predict immunotherapy response in non-small cell lung cancer (NSCLC)
Presenter: Arutha Kulasinghe
Session: Poster session 08
135P - Soluble PD-L1 (sPD-L1) as a predictive biomarker in patients with non-small cell lung cancer (NSCLC) treated with immune checkpoint inhibitors (ICIs) in the first-line setting
Presenter: Adrien Costantini
Session: Poster session 08
136P - Circulating hPG80 (WNT pathway activation) as a potential new prognostic/predictive factor of immunotherapy (ICI) efficacy: ONCOPRO prospective study
Presenter: Benoit You
Session: Poster session 08
137P - Long circulating-free DNA fragments predict early-progression (EP) and progression-free survival (PFS) in advanced carcinoma treated with immune-checkpoint inhibition (ICI): A new biomarker
Presenter: Sebastien Salas
Session: Poster session 08
138P - Toward predicting immune checkpoint blockade response in oesophageal squamous cell carcinoma: Integrating tumour and blood characteristics
Presenter: Amelie Franken
Session: Poster session 08
139P - Multimodal prognosis modeling of advanced NSCLC treated with first-line immunochemotherapy: Integrating genomic and microenvironmental data
Presenter: Yi Hu
Session: Poster session 08
140P - Mining metastatic lymph nodes for response to immune checkpoint therapy in non-small cell lung cancer
Presenter: Elena Donders
Session: Poster session 08
141P - Circulating immune cells predict immunotherapy benefit in patients with triple negative breast cancer: Preliminary results from the IRIS study
Presenter: Benedetta Conte
Session: Poster session 08
142P - Exploring tumor mutational burden and frameshift mutations as predictors of immune checkpoint inhibitor efficacy
Presenter: Mai Hoshino
Session: Poster session 08