Abstract 119P
Background
Fusion genes drive oncogenesis, and accurate pathogenicity assessment is crucial for therapeutic decisions. We have previously developed a system that leverages machine learning on known fusion genes to predict the pathogenicity of novel ones and explain its reasoning using large language model (LLM) (Cancers, accepted). This system achieved an accuracy of 0.98, comparable to the existing technologies, and provides explanations in natural language, a unique feature. However, these evaluations were performed on known data, leaving the accuracy and explanatory power for truly unknown fusion genes unclear. Evaluating explanatory power is challenging and requires multifaceted assessment.
Methods
This study focused on particular set of fusion genes with predictable mechanisms. We used BCR, involved in tumorigenesis, as the 5' partner, and selected 3' partners containing a kinase domain unreported with BCR. We input literature on BCR 5’ fusion genes into an LLM, and had it explain the mechanism of unreported BCR 5’ fusion genes with a 3’ kinase domain.
Results
Among the BCR fusion genes with unknown kinase partners, 30 were predicted as "Pathogenic” with high score. Among the 3' partner genes, receptor tyrosine kinases were the most frequent, followed by cell adhesion and extracellular matrix-related genes. The LLM generated domain-based hypotheses for the pathogenicity mechanisms of BCR fusion genes with unknown partners, considering the mechanisms of BCR::ABL1 and BCR::JAK2.
Conclusions
This study presents a novel approach for predicting and explaining the pathogenicity of unknown fusion genes, demonstrating its potential in certain cases. While the strength of evidence for the inferred mechanisms varied, this research suggests that more reliable explanations can be obtained for specific fusion genes, and further validation is needed for others. Experimental verification is necessary to confirm the validity of the hypotheses.
Clinical trial identification
Editorial acknowledgement
During the preparation of this work the author(s) used ChatGPT and Claude in order to suggest alternative phrasings, and improve clarity and readability. After using this tool/service, the author(s) reviewed and edited the content as needed and take(s) full responsibility for the content of the publication.
Legal entity responsible for the study
Fujitsu Ltd.
Funding
Fujitsu Ltd.
Disclosure
K. Murakami, S. Tago, S. Takishita, H. Morikawa, R. Kojima, M. Fuji: Financial Interests, Personal, Full or part-time Employment: Fujitsu Ltd.. K. Yokoyama, M. Ogawa, H. Fukushima, H. Takamori, Y. Nannya, S. Imoto: Financial Interests, Institutional, Funding: Fujitsu Ltd.
Resources from the same session
123P - Pan-cancer homologous recombination deficiency (HRD) evaluation in patients enrolled in a routine molecular screening program
Presenter: Paula Romero-Lozano
Session: Poster session 08
124P - Incidence of activating frameshift and nonsense mutations in clinically actionable oncogenes
Presenter: Sjors Kas
Session: Poster session 08
125P - Comparison of microarray and next-generation sequencing-based approaches for detection of homologous recombination deficiency
Presenter: Caleb Kidwell
Session: Poster session 08
126P - Genomic landscape and prognostic impact of HER2 low-expressing tumors
Presenter: Aditya Shreenivas
Session: Poster session 08
127P - Clinical utility of circulating tumor DNA (ctDNA) next generation sequencing (NGS) to inform treatment decisions for patients (pts) with advanced solid tumors
Presenter: Diego Gomez Puerto
Session: Poster session 08
128P - Whole blood transcriptomics identifies transcriptional patterns linked to outcomes in patients receiving immune checkpoint inhibitors
Presenter: Sara Hone Lopez
Session: Poster session 08
129P - Integrating large data to unveil vulnerabilities for patients with hot tumors resistant to checkpoint inhibition
Presenter: Anlin Li
Session: Poster session 08
130P - Ipilimumab plus nivolumab (Ipi+Nivo) in patients with tumors harboring high tumor mutational burden or load (TMB/TML-H): Results from the Drug Rediscovery Protocol (DRUP)
Presenter: Soemeya Haj Mohammad
Session: Poster session 08
131P - Systemic immune-inflammation index and overall survival with checkpoint inhibitors
Presenter: Oliver Kennedy
Session: Poster session 08