Abstract 139P
Background
Immunochemotherapy has emerged as the standard treatment for advanced non-small cell lung cancer (NSCLC). However, this combination also introduces certain challenges, including increased toxicity and the necessity for predictive biomarkers to identify patients most likely to benefit from immunochemotherapy.
Methods
In this prospective study involving 162 untreated advanced NSCLC patients at the Chinese PLA General Hospital, next-generation sequencing testing was conducted using an 1123-gene panel before initiating first-line immunochemotherapy. Lasso regression was used to identify core tumor mutation characteristics and a deep learning model based on Whole Slide Images (WSI) was employed to recognize tumor microenvironment (TME) features. Based on the information above, a prognosis model was established and optimized.
Results
Firstly, a Risk Score (RS) model was established based on tumor mutation patterns, including the RTK-RAS pathways, as well as ARID1B, ABCC2, NIPBL, DYNC2H1, SETD2, and FAF1. The high-risk score (HRS) patients exhibited significantly shorter progression-free survival (PFS) (HR=3.44; 95% CI 2.04–5.82; p<0.0001) and overall survival (OS) (HR=2.05; 95% CI 1.05–4.18; p=0.032) compared to the low-risk score (LRS) group. Secondly, the proportions of five cell types in TME were recognized by WSI model. Patients characterized by a higher proportion of epithelial cells demonstrated longer PFS (HR=0.012; 95% CI 7.49e-05–2.076; p=0.093). Finally, the comprehensive findings indicated that patients with LRS and a higher proportion of epithelial cells may significantly benefit from immunochemotherapy with longer PFS (HR=0.238; 95% CI 0.13-0.46; p<0.0001). The time-dependent ROC curve area under the curve for predicting PFS reached 0.807.
Conclusions
By integrating the RS model with genomic alterations and a deep learning-based microenvironment cell model, it is feasible to generate multimodal prognostic biomarkers that serve as guides for first-line immunochemotherapy of advanced NSCLC patients. These comprehensive biomarkers offer novel insights into personalized treatment strategies.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The Chinese PLA General Hospital.
Funding
Beijing ChosenMed Clinical Laboratory Co, Ltd.
Disclosure
S. Liu: Other, Personal, Full or part-time Employment: Beijing ChosenMed Clinical Laboratory Co, Ltd.. All other authors have declared no conflicts of interest.
Resources from the same session
173P - Unveiling a novel EpCAM-CD24+ circulating cells with unidentified origin associated with breast cancer distant metastasis
Presenter: Evgeniya Grigoryeva
Session: Poster session 08
174P - Prognostic value of the immune and metabolic profile in the response to neoadjuvant treatment with ICIs in triple-negative breast cancer patients (TNBC)
Presenter: Lucía Serrano García
Session: Poster session 08
175P - Utility of artificial intelligence (AI) in Ki67 scoring of a breast cancer (BC) patient population
Presenter: Xavier Pichon
Session: Poster session 08
176P - ERBB2 amplifications across sex, race, and cancer types
Presenter: Marc Machaalani
Session: Poster session 08
177P - HER2 testing in multiple solid tumors: Concordance between 3 scoring algorithms
Presenter: Wentao Yang
Session: Poster session 08
178P - PD-L1 expression in ER-low versus triple-negative (TN) advanced breast cancer (aBC), and according to phenotypic evolution from primary to recurrent disease
Presenter: Federica Miglietta
Session: Poster session 08
179P - Multimodal deep learning integrating MRI and molecular profiles for predicting outcomes in triple-negative breast cancer
Presenter: Seong Hwan Park
Session: Poster session 08
181P - Molecular characterization and immune microenvironment analysis of MSI-H patients with or without MMR gene mutations
Presenter: Mengxi Ge
Session: Poster session 08
182P - Multi-modal artificial intelligence outperforms image-based approaches for mutation prediction from H&E tissue images in colorectal cancer
Presenter: Marc Päpper
Session: Poster session 08