Abstract 139P
Background
Immunochemotherapy has emerged as the standard treatment for advanced non-small cell lung cancer (NSCLC). However, this combination also introduces certain challenges, including increased toxicity and the necessity for predictive biomarkers to identify patients most likely to benefit from immunochemotherapy.
Methods
In this prospective study involving 162 untreated advanced NSCLC patients at the Chinese PLA General Hospital, next-generation sequencing testing was conducted using an 1123-gene panel before initiating first-line immunochemotherapy. Lasso regression was used to identify core tumor mutation characteristics and a deep learning model based on Whole Slide Images (WSI) was employed to recognize tumor microenvironment (TME) features. Based on the information above, a prognosis model was established and optimized.
Results
Firstly, a Risk Score (RS) model was established based on tumor mutation patterns, including the RTK-RAS pathways, as well as ARID1B, ABCC2, NIPBL, DYNC2H1, SETD2, and FAF1. The high-risk score (HRS) patients exhibited significantly shorter progression-free survival (PFS) (HR=3.44; 95% CI 2.04–5.82; p<0.0001) and overall survival (OS) (HR=2.05; 95% CI 1.05–4.18; p=0.032) compared to the low-risk score (LRS) group. Secondly, the proportions of five cell types in TME were recognized by WSI model. Patients characterized by a higher proportion of epithelial cells demonstrated longer PFS (HR=0.012; 95% CI 7.49e-05–2.076; p=0.093). Finally, the comprehensive findings indicated that patients with LRS and a higher proportion of epithelial cells may significantly benefit from immunochemotherapy with longer PFS (HR=0.238; 95% CI 0.13-0.46; p<0.0001). The time-dependent ROC curve area under the curve for predicting PFS reached 0.807.
Conclusions
By integrating the RS model with genomic alterations and a deep learning-based microenvironment cell model, it is feasible to generate multimodal prognostic biomarkers that serve as guides for first-line immunochemotherapy of advanced NSCLC patients. These comprehensive biomarkers offer novel insights into personalized treatment strategies.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The Chinese PLA General Hospital.
Funding
Beijing ChosenMed Clinical Laboratory Co, Ltd.
Disclosure
S. Liu: Other, Personal, Full or part-time Employment: Beijing ChosenMed Clinical Laboratory Co, Ltd.. All other authors have declared no conflicts of interest.
Resources from the same session
122P - Practice patterns and treatment outcomes of molecular tumour board (MTB)-based personalized cancer therapies: A single-center experience
Presenter: Florian Moik
Session: Poster session 08
123P - Pan-cancer homologous recombination deficiency (HRD) evaluation in patients enrolled in a routine molecular screening program
Presenter: Paula Romero-Lozano
Session: Poster session 08
124P - Incidence of activating frameshift and nonsense mutations in clinically actionable oncogenes
Presenter: Sjors Kas
Session: Poster session 08
125P - Comparison of microarray and next-generation sequencing-based approaches for detection of homologous recombination deficiency
Presenter: Caleb Kidwell
Session: Poster session 08
126P - Genomic landscape and prognostic impact of HER2 low-expressing tumors
Presenter: Aditya Shreenivas
Session: Poster session 08
127P - Clinical utility of circulating tumor DNA (ctDNA) next generation sequencing (NGS) to inform treatment decisions for patients (pts) with advanced solid tumors
Presenter: Diego Gomez Puerto
Session: Poster session 08
128P - Whole blood transcriptomics identifies transcriptional patterns linked to outcomes in patients receiving immune checkpoint inhibitors
Presenter: Sara Hone Lopez
Session: Poster session 08
129P - Integrating large data to unveil vulnerabilities for patients with hot tumors resistant to checkpoint inhibition
Presenter: Anlin Li
Session: Poster session 08
130P - Ipilimumab plus nivolumab (Ipi+Nivo) in patients with tumors harboring high tumor mutational burden or load (TMB/TML-H): Results from the Drug Rediscovery Protocol (DRUP)
Presenter: Soemeya Haj Mohammad
Session: Poster session 08
131P - Systemic immune-inflammation index and overall survival with checkpoint inhibitors
Presenter: Oliver Kennedy
Session: Poster session 08