Abstract 179P
Background
Despite advancements in high-throughput technologies and data-driven methods enhancing our understanding of cancer outcomes, accurately predicting the clinical behavior of triple-negative breast cancer (TNBC) remains challenging. This study aims to develop a predictive system for TNBC prognosis and immune subtypes, including Basal-like, Mesenchymal, Immune-activated, and Luminal Androgen Receptor (LAR), by integrating medical imaging and molecular profiles without requiring regions of interest (ROI).
Methods
We utilized MRI image and molecular profile data from The Duke-Breast-Cancer-MRI project and Gangnam Severance Hospital as independent datasets. Our approach includes a unimodal prediction model using single, ROI-free MRI images, and a multimodal model combining MRI and molecular data in TNBC. We employed a custom ResNet152 convolutional neural network (CNN) for MRI image processing and a fully-connected neural network (FNN) for molecular data analysis.
Results
In predicting the 3-year disease-free survival (DFS) rates of TNBC across multiple cohorts, the ResNet152-based unimodal model demonstrated notable predictive accuracy (95.4%), while the multimodal model, incorporating molecular profiles like TP53 and FOXM1 transcripts, showed enhanced performance (96.8% accuracy). The models exhibited strong prognostic capabilities (log-rank tests, p < 0.05) and clinical utility (multivariate Cox regression model, hazard ratio = 1.51, 95% CI = 1.07-2.22, p = 0.01) in TNBC prognosis. In classifying TNBC immune types, the unimodal model achieved 96.7% accuracy, and the multimodal model showed further improvement with 97.3% accuracy, underscoring its potential in guiding immunotherapy based on immune checkpoint inhibitors (ICIs).
Conclusions
Our ResNet152-based multimodal prediction model demonstrated significant prognostic and therapeutic predictive value for ICI-based treatments in TNBC. This tool enhances the understanding of TNBC prognosis and treatment efficacy, potentially improving clinical practices and complementing existing diagnostic approaches.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
This research was supported by National Research Foundation of Korea (NRF) grants, funded by the Korean government (No. 2021M3H9A209695312, and 2022R1A2C200848011) and a grant from the Korea Research Institute of Bioscience and Biotechnology (KRIBB) Research Initiative Program (KGM5192423).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
183P - Development of a cadherin-17 (CDH17) immunohistochemistry assay for use as a companion diagnostic for cabotamig in gastrointestinal cancers
Presenter: Dennis Wong
Session: Poster session 08
184P - From breast and gastric to beyond: Expanding HER2 detection in solid tumors using quantitative RNA and protein analysis
Presenter: Kristian Egebjerg
Session: Poster session 08
185P - Multi-omics profiling and clinical characterization of colon-like cancer of unknown primary (CUP)
Presenter: Maria Pouyiourou
Session: Poster session 08
186P - Differences in antigen and immune marker expression in lymphoepithelioma-like carcinoma (LELC) and nasopharyngeal carcinoma (NPC): A multiplex immunohistochemistry (mIHC), spatial transcriptomic and multiplex immunofluorescence (mIF)-based analysis
Presenter: Daniel Peh
Session: Poster session 08
187P - Organoid growth-based oncological sensitivity test (OncoSensi) for predicting radiation therapy outcomes in pharyngeal and esophageal cancer
Presenter: Dong Woo Lee
Session: Poster session 08
188P - Integration of immunohistochemistry and transcriptomics reveals new insights into the immune landscape of soft-tissue sarcomas
Presenter: Giulia Petroni
Session: Poster session 08
189P - An image-based deep learning prediction model for characterization of the drug tolerant persister cell state
Presenter: Lauren Cech
Session: Poster session 08
190P - A large scale proteogenomics atlas for precision oncology research
Presenter: Timothy Anthony Yap
Session: Poster session 08
191P - Understanding and overcoming resistance to selective FGFR inhibitors across FGFR2-driven tumors
Presenter: Francesco Facchinetti
Session: Poster session 08
192P - Use of biosimulation to predict homologous recombination deficiency and PARPi benefit in patients with ovarian, pancreatic, prostate and triple negative breast cancers
Presenter: Daniel Palmer
Session: Poster session 08