Abstract 179P
Background
Despite advancements in high-throughput technologies and data-driven methods enhancing our understanding of cancer outcomes, accurately predicting the clinical behavior of triple-negative breast cancer (TNBC) remains challenging. This study aims to develop a predictive system for TNBC prognosis and immune subtypes, including Basal-like, Mesenchymal, Immune-activated, and Luminal Androgen Receptor (LAR), by integrating medical imaging and molecular profiles without requiring regions of interest (ROI).
Methods
We utilized MRI image and molecular profile data from The Duke-Breast-Cancer-MRI project and Gangnam Severance Hospital as independent datasets. Our approach includes a unimodal prediction model using single, ROI-free MRI images, and a multimodal model combining MRI and molecular data in TNBC. We employed a custom ResNet152 convolutional neural network (CNN) for MRI image processing and a fully-connected neural network (FNN) for molecular data analysis.
Results
In predicting the 3-year disease-free survival (DFS) rates of TNBC across multiple cohorts, the ResNet152-based unimodal model demonstrated notable predictive accuracy (95.4%), while the multimodal model, incorporating molecular profiles like TP53 and FOXM1 transcripts, showed enhanced performance (96.8% accuracy). The models exhibited strong prognostic capabilities (log-rank tests, p < 0.05) and clinical utility (multivariate Cox regression model, hazard ratio = 1.51, 95% CI = 1.07-2.22, p = 0.01) in TNBC prognosis. In classifying TNBC immune types, the unimodal model achieved 96.7% accuracy, and the multimodal model showed further improvement with 97.3% accuracy, underscoring its potential in guiding immunotherapy based on immune checkpoint inhibitors (ICIs).
Conclusions
Our ResNet152-based multimodal prediction model demonstrated significant prognostic and therapeutic predictive value for ICI-based treatments in TNBC. This tool enhances the understanding of TNBC prognosis and treatment efficacy, potentially improving clinical practices and complementing existing diagnostic approaches.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
The authors.
Funding
This research was supported by National Research Foundation of Korea (NRF) grants, funded by the Korean government (No. 2021M3H9A209695312, and 2022R1A2C200848011) and a grant from the Korea Research Institute of Bioscience and Biotechnology (KRIBB) Research Initiative Program (KGM5192423).
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
162P - Exploiting gp100-specific antibodies isolated from immune checkpoint inhibitor-responsive melanoma patients to target tumor cells
Presenter: Lukas Flatz
Session: Poster session 08
163P - Tumorspheres cultured from circulating cancer stem cells overexpress the innate checkpoint CD47 in breast cancer patients
Presenter: Monika Pizon
Session: Poster session 08
Resources:
Abstract
164P - A spatially informed transcriptomic model to forecast early resistance to front-line osimertinib in advanced EGFR-mutant NSCLC
Presenter: Jon Zugazagoitia
Session: Poster session 08
165P - Consistency analysis of c-Met protein expression over time in patients with non-squamous non-small cell lung cancer
Presenter: Alexis Cortot
Session: Poster session 08
166P - Integrative multi-omics refine molecular diagnostics in non-small cell lung cancer
Presenter: Li Ren Kong
Session: Poster session 08
167P - Tumor-immune spatial interactions on NSCLC H&E slide images predicts immunotherapy response: Preliminary external validation
Presenter: Liam Il-Young Chung
Session: Poster session 08
168P - Biosimulation coupled with personalized tumor microenvironment (TME) modeling predicts response to immunotherapy treatment in NSCLC patients
Presenter: Himanshu Grover
Session: Poster session 08
169P - Analysis of tumor immune microenvironment with mIHC in Chinese non-small cell lung cancer
Presenter: Hao Wu
Session: Poster session 08
170P - Clinical presentations and prognosis of HER2-low breast cancer in Taiwan
Presenter: Grace Chen
Session: Poster session 08
171P - A computational pathology collagen signature predictive of tamoxifen benefit in ductal carcinoma in situ: Results from a cohort within the UK/ANZ DCIS randomized trial
Presenter: Arpit Aggarwal
Session: Poster session 08