Abstract 103P
Background
Liquid biopsy is a promising, noninvasive approach for early cancer detection. However, the extremely low portion of circulating tumor DNA (ctDNA) shedding into the blood in early lung cancer limits the screening application. Exploring the multi-layer epigenetic alterations accompanied with carcinogenesis could enhance the detection capacity of liquid biopsies. Therefore, we leveraged this cross-information to represent transcriptional and pathological characteristics of lung cancer and developed an accurate and sensitive model for early-stage lung cancer screening.
Methods
Participants with lung cancer (n=211), especially early-stage lung cancer (stage 0-I, n=145), benign nodules (n=33), and healthy volunteers (n=132) were recruited from two independent clinical centers (training center n=191, external validation center n=185). Peripheral blood cfDNA samples were simultaneously subjected to ChIP-seq, RRBS, and low-pass WGS (lpWGS). Cancer-specific synergistic effect among cell-free nucleosome H3K4me3, cfDNA methylation, and cfDNA nucleosomal deleted regions (NDRs) were analyzed to filter out Multi-Epigenetic Regulated GEnes (MERGE). A stacked ensemble machine learning model based on lpWGS was developed by integrating fragmentomic features centering around MERGE.
Results
A total of 655 MERGE were identified from a set of training cohort. Functional annotation revealed their association with transcription factors related to early lung cancer, including KLF15, SP1, and E2F families. The cfDNA fragment motifs displayed more distinct cancer-specific patterns in MERGE regions than in whole-genome. The MERGE-based integrated model was validated in an external cohort (81.7% at 0-I stage), achieving a sensitivity of 90.4% at specificity of 83.1% (AUC, 0.94), and demonstrated its high sensitivity of 93.1% at IA stage, 95.2% of minimally invasive adenocarcinoma (MIA) and 78.3% of adenocarcinoma in situ (AIS).
Conclusions
We developed a novel method by effectively enriching biologically meaningful epigenetic regulated regions, and established an integrated model for enhanced early detection of lung cancer during curable phases.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Shanghai Weihe Medical Laboratory Co. Ltd.
Funding
Shanghai Weihe Medical Laboratory Co. ltd Shanghai Weihe Medical Laboratory Co. Ltd.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
123P - Pan-cancer homologous recombination deficiency (HRD) evaluation in patients enrolled in a routine molecular screening program
Presenter: Paula Romero-Lozano
Session: Poster session 08
124P - Incidence of activating frameshift and nonsense mutations in clinically actionable oncogenes
Presenter: Sjors Kas
Session: Poster session 08
125P - Comparison of microarray and next-generation sequencing-based approaches for detection of homologous recombination deficiency
Presenter: Caleb Kidwell
Session: Poster session 08
126P - Genomic landscape and prognostic impact of HER2 low-expressing tumors
Presenter: Aditya Shreenivas
Session: Poster session 08
127P - Clinical utility of circulating tumor DNA (ctDNA) next generation sequencing (NGS) to inform treatment decisions for patients (pts) with advanced solid tumors
Presenter: Diego Gomez Puerto
Session: Poster session 08
128P - Whole blood transcriptomics identifies transcriptional patterns linked to outcomes in patients receiving immune checkpoint inhibitors
Presenter: Sara Hone Lopez
Session: Poster session 08
129P - Integrating large data to unveil vulnerabilities for patients with hot tumors resistant to checkpoint inhibition
Presenter: Anlin Li
Session: Poster session 08
130P - Ipilimumab plus nivolumab (Ipi+Nivo) in patients with tumors harboring high tumor mutational burden or load (TMB/TML-H): Results from the Drug Rediscovery Protocol (DRUP)
Presenter: Soemeya Haj Mohammad
Session: Poster session 08
131P - Systemic immune-inflammation index and overall survival with checkpoint inhibitors
Presenter: Oliver Kennedy
Session: Poster session 08