Abstract 103P
Background
Liquid biopsy is a promising, noninvasive approach for early cancer detection. However, the extremely low portion of circulating tumor DNA (ctDNA) shedding into the blood in early lung cancer limits the screening application. Exploring the multi-layer epigenetic alterations accompanied with carcinogenesis could enhance the detection capacity of liquid biopsies. Therefore, we leveraged this cross-information to represent transcriptional and pathological characteristics of lung cancer and developed an accurate and sensitive model for early-stage lung cancer screening.
Methods
Participants with lung cancer (n=211), especially early-stage lung cancer (stage 0-I, n=145), benign nodules (n=33), and healthy volunteers (n=132) were recruited from two independent clinical centers (training center n=191, external validation center n=185). Peripheral blood cfDNA samples were simultaneously subjected to ChIP-seq, RRBS, and low-pass WGS (lpWGS). Cancer-specific synergistic effect among cell-free nucleosome H3K4me3, cfDNA methylation, and cfDNA nucleosomal deleted regions (NDRs) were analyzed to filter out Multi-Epigenetic Regulated GEnes (MERGE). A stacked ensemble machine learning model based on lpWGS was developed by integrating fragmentomic features centering around MERGE.
Results
A total of 655 MERGE were identified from a set of training cohort. Functional annotation revealed their association with transcription factors related to early lung cancer, including KLF15, SP1, and E2F families. The cfDNA fragment motifs displayed more distinct cancer-specific patterns in MERGE regions than in whole-genome. The MERGE-based integrated model was validated in an external cohort (81.7% at 0-I stage), achieving a sensitivity of 90.4% at specificity of 83.1% (AUC, 0.94), and demonstrated its high sensitivity of 93.1% at IA stage, 95.2% of minimally invasive adenocarcinoma (MIA) and 78.3% of adenocarcinoma in situ (AIS).
Conclusions
We developed a novel method by effectively enriching biologically meaningful epigenetic regulated regions, and established an integrated model for enhanced early detection of lung cancer during curable phases.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Shanghai Weihe Medical Laboratory Co. Ltd.
Funding
Shanghai Weihe Medical Laboratory Co. ltd Shanghai Weihe Medical Laboratory Co. Ltd.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
114P - Prevalence and landscape of pathogenic or likely pathogenic germline variants in cancer predisposition genes among selected patients with lung adenocarcinoma
Presenter: Oscar Gerardo Arrieta Rodriguez
Session: Poster session 08
115P - Gene rearrangements, actionability and access to precision medicine: Results from the ARCAGEN study
Presenter: Marie Morfouace
Session: Poster session 08
116P - Single-cell RNA sequencing reveals a subset of FSIP1 cancer cells and verified its value of prognosis in lung adenocarcinoma
Presenter: Xiaochen Zhang
Session: Poster session 08
Resources:
Abstract
117P - Methylome and transcriptome profiling of hepatoid adenocarcinoma of the stomach
Presenter: Shirong Zhang
Session: Poster session 08
Resources:
Abstract
118P - Comparative analysis of DNA and RNA-based NGS for detecting MET exon 14 skipping mutation in pan-solid tumor samples
Presenter: Ruijun Cai
Session: Poster session 08
119P - Predicting the pathogenicity of novel fusion genes and explaining reasons using a large language model: A focused assessment
Presenter: Katsuhiko Murakami
Session: Poster session 08
120P - A prospective comparative evaluation of automatic trial match tools in a molecular tumor board
Presenter: Lilia GUEGUEN
Session: Poster session 08
122P - Practice patterns and treatment outcomes of molecular tumour board (MTB)-based personalized cancer therapies: A single-center experience
Presenter: Florian Moik
Session: Poster session 08