Abstract 21P
Background
Glioma is a malignant brain tumor, with high mortality and high morbidity, accounting for 80-85% of malignant tumors in the central nervous system. Infinite proliferation of tumor cells, as the aftermath of imbalanced status in programmed cell death, is a critical stage in tumorigenesis. During the past several years, there has been increased interest in ferroptosis, which contributes to tumor progression.
Methods
U251 cells, U87 cells, and primary glioma cells were used in this study. The ferroptosis of cells were evaluated by cell viability, MDA, PI stain, and GPX. Truncated plasmids of DNAJC1, GPX4, and TRIM21 were conducted to perform the co-IP assays, which explore the regulatory mechanisms between DNAJC1, GPX4, and TRIM21. And we further designed a polypeptide, GAP-14, which could break the DNAJC1 protection of GPX4 from degradation by TRIM21. Orthotopic implantation models were further used to study the therapeutic effect of GAP-14.
Results
We first found that DNAJC1 was a susceptibility gene of glioma in the CGGA database, which was overexpressed in glioma tissues and accompanied by poor prognosis. Then, we discovered that DNAJC1 could protect glioma development by averting tumor cell ferroptosis, and DNAJC1 averted the glioma cells from ferroptosis via GPX4. CHX and MG132 were used to perform the assays that displayed DNAJC1 repressing proteasomal degradation of GPX4, and functioned as an inhibitor of GPX4 ubiquitination by competing with TRIM21. Moreover, under the regulatory mechanism between DNAJC1, GPX4, and TRIM21, GAP-14 was synthesized which specifically targeted on DNAJC1 regulating GPX4 stability. Orthotopic models showed that GAP-14, combined with TMZ, could prolong the survival time of the mice, and decrease the proliferation of glioma in vivo.
Conclusions
In the study, we investigated if DNAJC1 was a susceptibility gene of glioma, averting ferroptosis of tumor cells. It has been considered that the process with DNAJC1 protecting ferroptosis, is a vulnerable target in glioma treatment. Here, we have explored the gatekeeper mechanism of DNAJC1 regulating tumor cell ferroptosis, and designed a short polypeptide, GAP-14, which specifically resists the DNAJC1 protected ferroptosis, with curbing glioma exacerbation.
Clinical trial identification
Editorial acknowledgement
Legal entity responsible for the study
Tangdu Hospital.
Funding
1. Grant no. 81772661, The National Natural Science Foundation of China, Recipient: LW. 2. Grant no. 2020JZ-30, Natural Science Basic Research Program of Shaanxi Province, Recipient: LW. 3. Grant no. 2021ZTXM007, National Natural Science Foundation of China Booster Project of Tangdu Hospital, Recipient: MC. 4. Grant no. 2021SHRC012, Social Talent Funding Scheme of Tangdu Hospital, Recipient: MC.
Disclosure
All authors have declared no conflicts of interest.
Resources from the same session
1802P - Cost-effectiveness study of atezolizumab (ATZ) vs. durvalumab (DUR) in elderly extensive disease small cell lung cancer (ED-SCLC) patients (pts): Real-world data (RWD) on first-line chemotherapy combined with immune-checkpoint inhibitors (Chemo-ICIs)
Presenter: Ken Yamamoto
Session: Poster session 07
1803P - Analysis of samples from the SCLC REACTION trial: Discovery of biomarkers to optimize treatment
Presenter: Pernelle Lavaud
Session: Poster session 07
1805P - PKD1L1 mutations in small cell lung cancer: A genomic signature for poor prognosis and drug susceptibility
Presenter: Ning Tang
Session: Poster session 07
Resources:
Abstract
1806P - Clinical characteristics and management of small cell lung cancer long survivors
Presenter: Elisa Gobbini
Session: Poster session 07
1807P - Spatial analyses revealed MMP7 as the biomarker of tumor boundary correlated with immune resistance in small cell lung cancer
Presenter: Le Tang
Session: Poster session 07
1809P - Validation of the lung inmune prognostic (LIPI) index in first-line immunotherapy treatment of small cell lung carcinoma
Presenter: Patricia Cruz Castellanos
Session: Poster session 07
1810P - MYC expression defines distinct transcriptomic landscape and affects response to DNA-damaging therapies in SCLC
Presenter: Caterina de Rosa
Session: Poster session 07